
Reducing Maintenance Effort through
Software Operation Knowledge:

An Eclectic Empirical Evaluation
Henk van der Schuur, Slinger Jansen, Sjaak Brinkkemper

Department of Information and Computing Sciences
Utrecht University

Utrecht, The Netherlands
{h.schuur, s.jansen, s.brinkkemper}@cs.uu.nl

Abstract—Knowledge of in-the-field software operation is ac-
quired unsophisticatedly: acquisition processes are implemented
ad hoc, application-specific and are only triggered when end-
users experience severe failures. Vendors that do acquire such
knowledge structurally from their software applications, often are
unsuccessful in visualizing it in a consistent and uniform manner.
A generic approach to acquisition and presentation of software
operation knowledge reduces the time vendors need to integrate
acquisition logic into their applications, as well as the time needed
to analyze, compare and present uniform software operation data
resulting from in-the-field software operation. This paper pro-
poses a technique for software operation knowledge acquisition
and presentation through generic recording and visualization of
software operation. A prototype tool implementing this technique
is presented, as well as an extensive empirical evaluation of
the tool using an eclectic set of instruments (an experiment,
two case studies and expert focus group discussions) involving
three widely-used software applications. Results show that the
technique is expected to reduce software maintenance effort and
increase comprehension of end-user software operation.

Keywords-software maintenance, bug localization, program
comprehension, software process improvement, binary instru-
mentation, software feedback, empirical study

I. INTRODUCTION

One of the most challenging tasks in software maintenance
is to understand how software operates1 in the field. While
software vendors strive to build fast, robust, and intuitive soft-
ware and therefore extensively test and verify it in their own
environment, a plethora of hardware and software environment
facets cause software to behave differently in the field. Un-
known bugs, incompatibility issues and performance problems
are just three types of complications that may surface only
after deployment [1]. These complications can be mitigated
using knowledge of in-the-field software operation during
typical software engineering tasks such as bug localization and
fixing, crash analysis and user experience improvement [2].
Insight in the various environments software operates in, as
well as knowledge of how end-users behave, their expectations
of the software and their actual intentions of using the software
are only a few examples that can aid software vendors in
building robust and stable software applications.

1In this paper, we define ‘software operation’ as the fact or condition of
deployed software functioning in a specified manner.

While interest in software operation knowledge or SOK
(i.e., knowledge of in-the-field software operation) has broad-
ened to include software performance, quality and usage, as
well as end-user experience feedback aspects [3], software
vendors still acquire SOK in an unsophisticated manner [4].
Acquisition processes are implemented ad hoc, application-
specific and exception-triggered, which causes acquired data
to be unstructured and not uniform across applications. As
a consequence, mining, analysis and integration of acquired
data can be time-consuming and error prone, while software
engineering activities benefit only little. Software vendors that
do structurally acquire software operation data, frequently
struggle with extracting valuable software operation knowl-
edge from these data and visualizing extracted knowledge
effectively and meaningfully.

The main question we attempt to answer in this paper is
‘How can software maintenance effort be reduced through
generic recording and visualization of operation of deployed
software?’. To answer this question, we propose a novel
technique that (1) enables software vendors to acquire SOK
independent of target software, (2) allows vendors to get
insight in operation of their software in the field and (3)
contributes to reduction of software maintenance effort. We
present a prototype tool that implements this technique and
enables vendors to analyze, visualize and compare uniform
operation data, allowing easy presentation and utilization of
such data. The generic SOK acquisition and presentation
technique with corresponding tool are the contributions of this
research. The soundness and industrial utility of the technique
are demonstrated through evaluation of the tool using an
eclectic (i.e. deliberately composed) set of empirical evaluation
instruments [5], [6]: an experiment and two case studies (i.e.,
field study [7]) as well as expert focus group discussions. The
evaluation involves three widely-used software applications.

This paper continues with placing our work into context in
section II. Next, the software operation knowledge acquisition
and presentation technique is proposed (section III). Sec-
tion IV introduces the prototype tool; the empirical evaluation
approach and results are described in section V. Finally,
research limitations (section VI), conclusions and future work
(section VII) are presented.



II. RELATED WORK

Many research efforts and tools cover the subject of SOK
acquisition, but refer to such knowledge with various denota-
tions and use it to accomplish various goals. First, software
operation knowledge is acquired to monitor deployed soft-
ware [8], [9], [10]. However, in general, code modifications
are needed in order to integrate monitoring techniques with the
target software. Furthermore, while these techniques suffice in
signaling problems regarding the functioning of software, they
assist only little in pinpointing problem causes and actually
eliminating bugs. Using our technique, no code modifications
are needed to enable operation recording. Operation recording
visualizations assist in identifying and eliminating software
failure causes.

Secondly, SOK is also acquired to debug software. Clause
and Orso [11] present a technique for recording, minimizing
and replaying failing software executions. The technique is
limited, however, since only interactions between an appli-
cation and its environment as well as ‘relevant’ portions
of the environment are recorded. While our technique also
records certain environment details, relevant method events are
recorded instead of interactions between an application and its
operation environment. Narayanasamy et al. [12] propose their
BugNet architecture that continuously records information
during software production runs, to support developers in
characterizing bugs by enabling them to replay the program’s
operation before a crash. Even though BugNet provides the
ability to replay an application’s executions across context
switches and interrupts, BugNet requires a specific environ-
ment as well as significant effort to be integrated in a vendor’s
software product. Also, it is left unclear to which extent the
proposed techniques contribute to software maintenance or
software operation comprehension. Our technique allows easy
integration into existing software products, and supports both
software maintenance and software operation comprehension.

Thirdly, several techniques for presenting software operation
recordings exist [13], [14]. Although these techniques are
sophisticated, it is unclear what are the usage requirements
for these techniques and to which extent these techniques
contribute to comprehension of end-user software operation.

III. SOK ACQUISITION AND PRESENTATION

We propose a software operation knowledge acquisition
and presentation technique that is designed to reduce soft-
ware maintenance effort and increase comprehension of end-
user software operation, through generic (i.e., independently
of target software) recording and visualization of software
operation.

Existing approaches have three shortcomings with respect to
this goal. First, most approaches require significant integration
effort (e.g. source code changes) to realize operation record-
ing or visualization (as discussed in section II). Secondly,
most approaches only work for a specific system or software
application and thus are not generically applicable. Thirdly,
resulting recordings often contrast in structure and format,
depending on the software of which the operation is being

recorded. As a consequence, recordings are presented errat-
ically and are difficult to analyze, comprehend or compare.
Moreover, software engineering tasks benefit only little from
acquired knowledge of the behavior of software and end-
users in the field. We addressed these issues by developing
a technique that (1) allows generic recording of in-the-field
software operation, without requiring thorough knowledge of
the composition (i.e. source code) of the target software, or
deployment of additional tools and (2) allows uniform storage
and visualization of resulting operation recordings.

Our SOK acquisition and presentation technique consists of
a weaving (A), recording (B) and a visualization (C) process
and can be mapped onto the SOK framework [3]; a usage sce-
nario2 is provided in figure 1. Recording of software operation
is preceded by a weaving process in which SOK acquisition
logic is woven into the executable that is the target of operation
recording. This logic is responsible for generically acquiring
operation data and uniformly writing operation recordings
to disk. Operation recordings resulting from application of
our technique, called SOK prints, represent behavior of both
software and end-user during software operation in the form
of event sequences and sources. SOK prints can be visualized
and replayed. By analyzing these recordings, knowledge of
software performance, quality and usage during operation
recording can be acquired.

A. Weaving

Aspect-oriented programming (AOP) is effectively deployed
in the domains of software monitoring and tracing [9], [15].
However, we encounter in industry that product software
vendors have to overcome time-consuming obstacles when
they leverage AOP repeatedly and separately for each of
their software products: vendors write product-specific SOK
acquisition aspects and extend their AOP libraries to new
(versions of the same) software products. In our technique,
aspect weaving is used to weave SOK acquisition logic in-
dependent of the bytecode (e.g. Java bytecode or the .NET
Common Intermediate Language) of the executable of which
operation has to be recorded, without requiring knowledge of,
or integration into the source code of a target executable. Given
the set of all methods of an executable M , S is the set of
weaving candidate methods, where S ⊆M . For each method
µ ∈ S , acquisition logic in the form of a set of advices A
is woven into the executable at join points γentry(µ), γexit(µ)
and γexception(µ). By weaving the logic at those join points,
software performance, quality and usage can be recorded.
When the weaving process has finished, a SOK assembly
(an executable containing the woven acquisition logic) is
compiled. Also, a SOK assembly descriptor is generated. This
extensible structure description contains all method descrip-
tions (i.e., signature, visibility and return type) of all classes of
the executable into which acquisition logic is woven. During
the assembly descriptor generation process, a unique key is

2Note that the SOK framework integration process is optional [3] and
omitted in this figure.



assigned to each method and method parameter. SOK print
events are created during operation recording and correspond
to one method and its parameters. Methods and parameters
are referenced by these keys to minimize the SOK print size,
and performance loss induced by the woven acquisition logic.

B. Recording
When a SOK assembly is executed, three types of events

ε(µ) are recorded for each method µ ∈ S : method entries,
εentry(µ), method exits, εexit(µ) and unhandled exceptions,
εexception(µ). SOK acquisition occurs when, as part of software
operation, an µ ∈ S is called. A SOK print is created with the
first call to any µ∈ S . With the occurrence of each event ε(µ),
the SOK print is updated with additional data. Every event ε(µ)
references the method µ it occurs at, as well as the parameters
of µ, with the keys by which the method or parameters are
defined in the assembly descriptor. Also, the time and date
at which an event ε(µ) occurred, as well as an event source
identifier, are stored for each event. An event source represents
a user (profile) that is (indirectly) accountable for events. Per
event type, additional data are recorded:

Method Entries: Per method entry event εentry(µ), all string
representations of the values of all method parameters are
recorded, where a string representation is the string return
value of a public method that can be called on an object of
the same type as the parameter variable. If a method has no
parameters, only call time and date are recorded.

Method Exits: Per method exit event εexit(µ), all string
representations of the method return value are recorded, where
a string representation is the string return value of a public
method that can be called on an object of the same type as
the method return value. If a method’s return type is void, no
data are recorded.

Unhandled Exceptions: Per unhandled exception εexception(µ),
the exception’s type, message, stack trace and data object
are recorded. If an exception cause is defined in the form
of an InnerException, the type, message and stack trace
corresponding to the inner exception are recorded in addition.

Since end-users are the (indirect) source of software operation,
an event source contained in a SOK print is described by
means of properties that uniquely identify the user currently
executing the woven software. Together with these credentials,
a source description consists of the operation session start date
and time, environment variables, hardware specifications and
operating system details of the system on which the woven
software is executed. When an end-user executes a SOK as-
sembly, closes it and executes it again, the corresponding SOK
print contains two source descriptions, since two operation
sessions have taken place.

C. Visualization
SOK prints can be represented graphically to support com-

prehension of both software and end-user behavior during

Id
en

tifi
ca

tio
n

Customer Software Vendor

Assembly
Development perspective

Developer

Assembly

Nuntia tool

content analysis

SOK acquisition criteria

Assembly

woven logic

SOK acquisition 
logic weaving

woven logic

software operation
recording

Assembly

Storage

Tester
Developer
Maintainer

software operation
information

operation 
visualisation

operation
analysis

Software 
development

End-user behavior 
comprehension

Software 
maintenance

Patched 
assembly

Patched 
assembly

Ac
qu

is
iti

on
Pr

es
en

ta
tio

n
U

til
iz

at
io

n

Assembly 
descriptor

SOK assembly
 descriptor generation

Assembly 
descriptor

End-user

software operation knowledge

software operation knowledge

Legend

Deployment

software
operation

data
Storage

Nuntia tool
software
operation

knowledge

SOK
acquisition

criteria
Data Mining + 

Abstraction

software
operation

data

Behavior

A

B

C

Fig. 1. SOK acquisition and presentation technique usage scenario

software operation. For example, the causality of user actions
is visualized as a state or flow diagram. Event sources are
visualized based on their specific properties (e.g. username),
and operation recording statistics as well as corresponding
graphs are created based on the operation data that consti-
tute one or multiple SOK prints. Also, visualizing recorded
event chains can support (comprehension of) event replays.
Visualization of SOK prints is not dependent on weaving or
recording processes.

IV. NUNTIA TOOL

To evaluate our SOK acquisition and presentation technique,
we implemented it in a binary instrumentation tool named
Nuntia. In line with the description of our technique in sec-
tion III, the tool enables generic weaving of SOK acquisition
logic into assemblies and provides software operation record-
ing functionality by creating SOK prints. A usage scenario of
the technique using Nuntia is provided in figure 1.

A. Weaving

Implementation of a generic executable weaving process
was a challenge. The structure and contents of compiled-code
executables depend on the language the software is written
in, the compiler used to create the executable as well as the
platform the executable is compiled for. Since deploy-time
(post-compilation) weaving requires disassembly, implemen-
tation of language-, compiler- and platform independent post-
compilation weaving requires coping with many language-,



compiler- and platform specific details that do not effect the
principles of our technique. Therefore, we decided to focus
on implementing the technique for one type of executables:
Nuntia provides functionality to weave SOK acquisition logic
into all .NET assemblies compiled with the C# compiler that is
part of the .NET Framework3 [17]. Although Nuntia requires
.NET, our technique is also applicable to other languages
that allow binary instrumentation and reflection (e.g. Java
or Objective-C). To implement the SOK acquisition logic
weaving functionality, a SOK acquisition host and a plug-in for
the PostSharp framework [18] have been developed. A second
challenge was to make sure that for (all possible executions
of) all .NET assemblies, stacks were read and manipulated
such that all types of parameters, return values and exceptions
could be read correctly, without introducing unwanted side
effects to the target software. We are aware of the fact that
Nuntia might introduce unwanted side effects, for example
in realtime, distributed or complex recursive methods. Future
research and development is needed to limit these effects.

After successful weaving of the SOK acquisition logic
at join points of selected methods (S ), a SOK assembly
descriptor is generated in the form of an XML file. SOK
assembly descriptors are validated against an XML schema
that defines the data structure in which assembly class, method
and parameter characteristics are stored.

B. Recording

Analogous to the recording mechanism description in sec-
tion III, logic woven by the Nuntia tool creates an empty SOK
print with the initial call of an assembly method. Similarly,
with the occurrence of method entries, method exits and
unhandled exceptions during operation of the assembly, the
SOK print is updated with additional data. SOK prints are
stored in the form of an XML file that is validated against
an XML schema definition. To minimize performance loss
induced by SOK print updating, names and values are stored
in SOK assembly descriptors and referenced by SOK prints
instead of repetitively including those in SOK prints. However,
one should recognize that both the performance loss induced
by SOK print updating as well as the size of the resulting
SOK prints remain directly proportional to the number of join
points at which acquisition logic is woven.

C. Visualization

The Nuntia tool contains functionality to visualize and
replay in-the-field software operation that is recorded in the
form of SOK prints. Event sequences are replayed event-
by-event. Figure 2 shows a screenshot4 of Nuntia’s SOK
print visualization and replay functionality. A SOK print is
visualized as a software operation sequence graph, with one
edge (event) and two nodes (methods) highlighted. Nodes can
have an elliptical or rhombic shape. Elliptical nodes represent

3Note that Nuntia may operate platform independently by weaving into
assemblies created with the C# compiler that is part of the Mono project [16].

4Most figures in this paper are best viewed in color and are also available
in high resolution at http://people.cs.uu.nl/schuurhw/nuntia/.

Render Settings
Graph Controls Replay Controls

Event Properties

Parameter Values

SOK Print Statistics

Software Operation Graph

Event Sources
Environment Data

Fig. 2. Nuntia SOK print visualization and replay

methods; rhombic nodes represent exceptions. In figure 2,
for instance, edge 88 represents an entry of method B from
method A and is highlighted. Since the selected event is a
method entry event, Nuntia shows the types, names and (string
representations of) parameter values that are passed to method
B as part of the entry event. With the highlighted call to
method B in figure 2, only one parameter named letterx with
value Letter X is passed. For a method exit event, Nuntia
shows the type, name and value of the return variable. When
a method is selected, the method’s class, type, name, signature
and percentage of successful returns are displayed.

In addition to event and method details, Nuntia shows
properties of the SOK print that is loaded. The number of
events, method entries, method exits, exceptions as well as
the time span during which the SOK print was recorded are
displayed. Also, as shown in figure 2, Nuntia shows a list of
event sources and per event source a list with environment
data. By selecting multiple sources, event sequences of multi-
ple sources can be rendered simultaneously. The Nuntia tool
also allows simultaneous visualization of multiple software
operation sessions (see figure 5). When doing so, instead of
event numbering, Nuntia shows at the edges the number of
times a particular event has occurred during the total time all
SOK print recordings were recorded. SOK print visualization
is implemented using Microsoft Automatic Graph Layout [19].
Nuntia is written in C# and requires version 3.5 SP1 of the
.NET framework [17].

V. EMPIRICAL EVALUATION

To investigate the soundness and industrial utility of the
SOK acquisition and presentation technique, the following
research questions and propositions were evaluated. If all
propositions corresponding to a particular research question
are true, we consider that question to be answered positively.

RQ1 Does the technique allow generic software operation
recording?

P1 Nuntia weaves functioning SOK acquisition logic into an
executable, preserving the executable’s original functionality
without introducing unwanted or unexpected side effects.



P2 Nuntia weaves functioning SOK acquisition logic into
executables of diverse applications, developed by distinct
and independent software vendors.

RQ2 Does the technique allow accurate recording and replay
of software operation?

P3 The events recorded in SOK prints by Nuntia are
consistent with software operation during recording.
P4 Visualizations and replays of SOK prints resulting
from Nuntia are consistent with software operation during
recording.

RQ3 Does the technique support software maintenance and
operation comprehension?

P5 Nuntia provides valuable insight in, and increases
comprehension of behavior of in-the-field software and
end-users
P6 Nuntia discloses new knowledge that is useful in
software maintenance activities and is not available without
the introduction of Nuntia.
P7 Nuntia reduces the time needed to analyze software
operation failures.

After Easterbrook et al. [5] and Kitchenham et al. [6], we
employed an eclectic set of empirical evaluation instruments
to answer these research questions, and therewith evaluate our
technique in both scientific and industrial contexts.

Table I shows per research question which evaluation instru-
ment is used to answer the question. A questionnaire was used
as a basis for expert focus group discussions and case study
evaluation (for reasons of employee availability, case study re-
sults were evaluated with CADComp employees). Participants
confirmed or rejected each statement using a Likert scale (1:
strongly disagree, 5: strongly agree). Questionnaire statements
and results are presented in table II.

Empirical Evaluation Instrument RQ1 RQ2 RQ3

Field Study Paint.NET Experiment X X
Industrial Case Studies X X X

Expert Focus Group Discussions X

TABLE I
EMPIRICAL EVALUATION INSTRUMENTS PER RESEARCH QUESTION

We deliberately selected both free and commercial software
that is widely used in the field, to acquire SOK from. All
three subjects based on the .NET framework [17]: Paint.NET is
based on Windows Forms (C#), ERPProd on ASP.NET (Visual
Basic) and CADProd on Windows Presentation Foundation
(C#). For all three subjects, we tried to create a realistic
instance of the scenario presented in figure 1. We regard the
research as repeatable with the same results, presuming similar
circumstances (similar tools, similar-sized software vendors,
etc.). Note that for reasons of confidentiality, names of the
latter subjects and their vendors have been anonymized.

Paint.NET Experiment The correctness of Nuntia’s software
operation recording and visualization functionality (i.e., the
extent to which Nuntia SOK prints represent the actual soft-
ware operation correctly) is demonstrated by comparing SOK

acquired by Nuntia during usage of Paint.NET, throughout
we deliberately exposed bugs, with Paint.NET’s change log.
Paint.NET is a free and widely-used image and photo editing
application for the Windows operating system, developed by
dotPDN. Since the 1.0 release in 2004, 14 releases of the
application have been published. The last stable release at the
time of writing is 3.5.6, which dates from November, 2010.

Industrial Case Studies The extent to which Nuntia reduces
software maintenance effort, and supports software develop-
ment as well as comprehension of end-user software operation,
is evaluated by means of two case studies performed at
CADComp and ERPComp.

CADComp is a European software vendor that was founded
in 1990 and is currently performing development activities
in the Netherlands, Belgium and Romania. Development of
CADProd, a CAD drawing management application, started
in 2007. Version 1.0 has been released in 2009 and is used
by more than 300 customers. ERPComp is an ERP software
vendor with 2,500 employees and establishments in 40 coun-
tries. ERPComp was founded in 1984 and serves customers
in 125 different countries. ERPComp develops ERPProd,
an accounting solution provided as a secure online internet
service. ERPProd 1.0 has been released in 2005. Since then,
ten major versions have been released. The last release at the
time of writing is 2010-2, which is used by 16,600 customers.

SOK prints resulting from recording operation of these two
industrial software applications (CADProd being deployed at
the customer site) using Nuntia, were analyzed and discussed
with key developers, maintainers and managers employed
by the two vendors. Also, these employees were invited to
participate in evaluative sessions in which their opinions about
the functionality and utility of the Nuntia tool were evaluated.

Expert Focus Group Discussions Chief technology officers,
product managers and senior team leaders from industry
(recruited by means of an invitation sent to our professional
and educational networks) were assembled in a focus group
to discuss the utility of both the Nuntia tool and the SOK ac-
quisition and presentation technique, in processes not directly
related to software development (e.g. product management).

A. Paint.NET Experiment

Approach After examining Paint.NET’s change log and road
map, we selected version 3.35 to evaluate Nuntia. According to
its change log, this version contains a bug causing a program
crash when encountered, which is fixed in the subsequent
release (Paint.NET 3.36). According to the change log, this
particular version would crash ‘When using the “Fixed Ratio”
feature of the Rectangle Selection tool, if 0 was specified for
both the width and height’ [20]. During evaluation we focused
on this bug, which we will refer to as ‘fixed ratio bug’.

First, we deployed Paint.NET on our test machine. Using
Nuntia, we generated SOK assemblies and assembly descrip-
tors for Paint.NET 3.35. SPaint.NET , a set of Paint.NET’s class
methods used by the tool to weave SOK acquisition logic



into the Paint.NET assemblies, was composed based on the
Paint.NET change log as well as the assembly metadata Nuntia
provides after having read an assembly. In this particular case,
according to the change log, the bug is related to the ‘Fixed Ra-
tio’ feature of the ‘Rectangle Selection’ tool. Therefore, we fo-
cused on Paint.NET’s classes PaintDotNet.Tools.SelectionTool
and PaintDotNet.Tools.RectangleSelectTool. Of those classes,
the methods CreateSelectionPolygon and CreateShape were
marked as candidates for SPaint.NET . During analysis of as-
sembly information provided by Nuntia, we discovered the
class PaintDotNet.SelectionDrawModeInfo. Of this class, we
marked the methods get Width and get Height, since the fixed
ratio bug crashes Paint.NET when ‘0’ is specified for both the
width and the height of the selection. Next, a SOK assembly
was generated according to the process described in section III.
We reproduced the fixed ratio bug using the SOK assembly
and analyzed the resulting SOK print afterwards. Next, we
repeated these steps with Paint.NET 3.36 with S identical to
the set that was used with Paint.NET 3.35 and compared the
created SOK print with the one of Paint.NET 3.35. During the
recording of both versions, identical actions were performed.

Results Figure 3 shows the visualization of the SOK
print that was created during the fixed ratio bug recording
session we performed. The program crash caused by the bug
is visualized by two rhombic nodes (which, as described
in section IV, represent exceptions). The first exception
occurs in method CreateShape, after the selection width
and height both have been requested twice. Analyzing
the SOK print using the Nuntia tool, the first exception
is an OverflowException with the message ‘Negating
the minimum value of a twos complement number is
invalid.’, originating from Math.AbsHelper(Int32 value),
PaintDotNet.Utility.PointsToRectangle(Point a, Point b) and
PaintDotNet.Tools.RectangleSelectTool.CreateShape(List‘1
tracePoints). This exception was included in the pdncrash.log
file Paint.NET generated when the application crashed. The
second exception is a NullReferenceException occurring
in method CreateSelectionPolygon, after CreateShape
has finished. The second exception originates from
PaintDotNet.Utility.SutherlandHodgmanOneAxis(RectangleF
bounds, RectangleEdge edge, List‘1 v), PaintDot-
Net.Utility.SutherlandHodgman(RectangleF bounds, List‘1
v) and PaintDotNet.Tools.SelectionTool.CreateSelection
Polygon() with the message ‘Object reference not set to an
instance of an object.’. This exception was not mentioned in
the pdncrash.log file.

Figure 4 shows the visualization of the SOK print that
was created during the recording session of Paint.NET ver-
sion 3.36. As the fixed ratio bug has been fixed, no ex-
ceptions are part of this recording. Furthermore, the re-
turn types of methods CreateShape and CreateSelectionPoly-
gon have changed from void in version 3.35 to Collec-
tions.Generic.List‘1[Drawing.PointF] and Drawing.PointF[] in
version 3.36, respectively, as became clear after SOK print
analysis using the Nuntia tool. In both versions, the return
values of all calls to both the get Height and get Width

Fig. 3. Visualization of ‘fixed ratio’ bug of Paint.NET 3.35

Fig. 4. No exceptions occur using Paint.NET 3.36: fixed ratio bug fixed

Fig. 5. Visualizing all acquired CADProd SOK prints simultaneously

methods were 0 (of type float64). In other words, the fixed
ratio bug was not solved by altering the representation of the
selection size parameters, or by preventing a selection with
area zero to be created internally.

Regarding recording execution of the ‘Fixed Ratio’ selection
feature with versions 3.35 and 3.36 of Paint.NET using the
Nuntia tool, SOK prints resulting from this recording are
consistent with the behavior of Paint.NET described in the
change log of the software.

B. Industrial Case Studies

Approach
1) CADProd: First, CADProd’s project leader was inter-

viewed, to learn which parts of the software CADComp desires
to acquire SOK from. He indicated that he was particularly
interested in the data that is entered into CADProd by its end-
users. Based on this information, all ‘set XYZ’ methods of
relevant CADProd business objects were marked as candidates
for SCADProd , where XYZ is a business object property name.
Also, methods handling search input and application launch,
as well as methods that potentially throw exceptions were



Identifier Statement Average (σ)
CADComp Focus group

S1 Nuntia provides new, valuable insight in the behavior of our software in the field 4.44 (0.61) 4.00 (0.82)
S2 Nuntia provides new, valuable insight in the behavior of our end-users in the field 4.31 (0.85) 4.00 (0.94)
S3 Nuntia increases my comprehension of the behavior of our software in the field 3.81 (0.81) 4.44 (0.50)
S4 Nuntia increases my comprehension of the behavior of our end-users in the field 3.75 (0.90) 3.89 (0.87)
S5 Nuntia shortens the time needed to find bugs 3.94 (0.83) 3.00 (0.94)
S6 Nuntia shortens the time needed to solve bugs 3.63 (0.93) 3.67 (0.94)
S7 Nuntia discloses knowledge I did not have before 4.06 (0.56) 4.33 (0.67)
S8 Nuntia supports our software maintenance activities 3.88 (0.78) 3.89 (0.57)
S9 Nuntia supports our software development activities 3.56 (0.93) 3.67 (1.05)
S10 Nuntia supports other activities (please specify which activities) 3.63 (1.11) 3.44 (0.68)

TABLE II
QUESTIONNAIRE STATEMENTS AND RESULTS

added to SCADProd . Next, operation of CADProd, deployed at
one of CADComp’s 300 CADProd customers, was recorded
by replacing the customer’s original CADProd assembly with
a SOK assembly generated by the Nuntia tool. Five of the
customer’s end-users were asked to use the software normally
for about twenty minutes. Subsequent to the recording ses-
sions, resulting SOK prints were analyzed and discussed by
visualizing and presenting them to sixteen of CADComp’s
managers, team leaders and developers. Afterwards, these
CADComp employees filled out the questionnaire (see ta-
ble II). Participating employees had an average of 11.6 years
experience in information technology (σ = 5.36 years).

2) ERPProd: ERPComp daily monitors the performance,
quality and usage of ERPProd, based on software operation
data that is stored in application, error, help, and process
logs. ERPProd’s product line manager and one of ERPComp’s
senior research engineers were interviewed to determine if new
and valuable SOK could be acquired from ERPProd using
the Nuntia tool. Based on interview results, SERPProd was
determined and Nuntia’s generic weaving functionality was
evaluated by creating SOK assemblies of certain ERPProd
assemblies. Next, the assemblies were deployed in one of
the ERPProd testing environments. Operation recording results
were evaluated with the senior research engineer afterwards.

Results
1) CADProd: Figure 5 shows a fragment of a simulta-

neous visualization of all SOK prints resulting from the
CADProd operation recording sessions. The figure illus-
trates to which extent CADProd usage by the five end-
users during the recording sessions resulted in calls of
two (of in total 86) methods in SCADProd . Methods CAD-
Prod.Ulo.ULOFolderSearchResults.Search(Ulo.ULOFile File,
string strSearch, bool bDescriptions, bool bAllProfiles) and
CADProd.Ulo.ULOFile.get FullPath() are called 14 and 317
times, respectively. Of the 317 calls to the get FullPath
method, 36 (11,36%) caused a NullReferenceException. SOK
print analysis by CADProd developers showed that these
calls form a CADProd operation bug that was unknown to
CADComp’s CADProd developers. They reasoned that the
get FullPath method exception might be caused by too long
path names for deeply nested projects. Also, the developers
suggested to implement functionality to show a graph consist-
ing of only UI-related methods and events, and proposed to

display events in a list, both to increase Nuntia’s usability.

Concerning the questionnaire results (see table II and fig-
ure 6), the participants tended to agree with the statements,
on average answering the statements with 3.9 (σ = 0.83).
Participants agreed the most with statements S1 and S2
(these statements were answered with 4.4 (σ = 0.61) and
4.3 (σ = 0.85) on average, respectively) and therewith found
Nuntia to provide new, valuable software operation insights.
There was most consensus on S7 (‘Nuntia discloses knowledge
I did not have before’, avg. answer 4.1, σ = 0.56) and S1 (4.4,
σ = 0.61). Least consensus was reached on S10 (σ = 1.11).
Participants agreed the least on statements S9, S10 and S6;
these statements were answered with 3.56 (σ = 0.93), 3.63
(σ = 1.11) and 3.63 (σ = 0.93) on average, respectively. In the
context of S10, product management, training and customer
relationship management were mentioned as other activities
supported by Nuntia.

2) ERPProd: During the interview, the senior research
engineer indicated that ERPComp uses a graphing component
to visualize and monitor parts of the software operation
knowledge they acquire. ERPComp developers have written
a library on top of this component to provide it with XML
data more easily. The engineer explained that when a graph
looks faulty, developers would like to be able to see the
data that is provided to the graphing component. Therefore,
two of the component methods were added to SERPProd :
ERPComp.FCharts.SingleSeriesChart.AddMeasurement(string
ID, string label, object value) and ERP-
Comp.FCharts.SingleSeriesChart.get XML(). Generating
a SOK assembly of the graphing component assembly,
written in Visual Basic, went without problems. When the
original assembly was replaced by the SOK assembly locally,
a SOK print was created successfully after the first refresh of
the local ERPProd environment. The data stored in the print
matched the corresponding graphs that were shown in the
ASP.NET application. After numerous successful tests, the
SOK assemblies were deployed at the vendor’s internal testing
web servers. While SOK prints were created successfully
at first, the environment showed signs of unstableness after
some time, possibly related to concurrent requests, threading
or file locking. The precise cause of instability could not be
identified; future case studies will be carried out to continue
the tests. During evaluation, the engineer indicated that



although the prototype still needs work, valuable knowledge
can be acquired with it. Also, he suggested the prototype to
be extended with functionality to easily enable or disable
SOK acquisition.

C. Expert Focus Group Discussions

Approach A SOK focus group consisting of nine experts
employed by nine different European software vendors was
assembled. The group consisted of two CTOs, four prod-
uct managers and three senior engineers, with 14 years of
experience in information technology on average (σ = 4.35
years). First, the Nuntia prototype was introduced to the focus
group experts by means of a presentation in which the tool
functionality and characteristics were exposed. Next, a tool
demo was given during which our SOK acquisition and presen-
tation technique was demonstrated on Paint.NET 3.5.1. Also,
during this demo, the resulting SOK print was visualized and
analyzed with the participants. Finally, a discussion about the
technique and the tool was held and participants were asked
to fill out the questionnaire (see table II). Participants were
asked to fill out the questionnaire with the assumption that
the demonstrated technique was available for their software
development platform or language.

Results The nine focus group experts inclined to agree
with the questionnaire statements (see table II and figure 7),
on average answering the statements with 3.83 (σ = 0.80).
Participants agreed the most with statements S3 and S7 (these
statements were answered with 4.4 (σ = 0.50) and 4.3 (σ =
0.67) on average, respectively) and therewith found Nuntia to
increase their comprehension of in-the-field behavior of their
software, as well as to disclose knowledge they did not have
before. There was most consensus on S3 (avg. answer 4.4,
σ = 0.50) and S8 (‘Nuntia supports our software maintenance
activities’, avg. answer 3.9, σ = 0.57). Least consensus was
reached on S9 (σ = 1.05). Participants agreed the least with
statements S5 and S10; these statements were answered with
3.0 (σ = 0.94) and 3.4 (σ = 0.68) on average, respectively.
In the context of statement 10, software testing and usability
improvement were mentioned as other activities that are sup-
ported by Nuntia. Summarizing, participants found Nuntia to
increase their comprehension of in-the-field operation of their
software and to disclose knowledge they did not have before.
Also, they were in harmony about finding Nuntia significantly
supporting their software maintenance activities.

During the discussion, participants stated that both the Nun-
tia tool as well as the SOK acquisition and presentation
technique it implements have high potential. They indicated
that insight in behavior of (end-users on) software (1) is
frequently required in product management and technical
support processes, and (2) is provided by the Nuntia tool.
Also, participants saw utility of the tool in software testing and
quality assurance processes by simulating realistic software
operation during these processes, allowing them to acquire
and analyze SOK before actual deployment of the software.

The SOK acquisition and presentation technique in particular
was valued especially because of its post-compilation and SOK

Fig. 6. Answers to questionnaire statements by CADComp employees

Fig. 7. Answers to questionnaire statements by focus group experts

acquisition criteria selection characteristics, which, according
to the participants, enable one to quickly acquire valuable
SOK without having thorough knowledge of the software
source code itself. The Nuntia tool was praised because of
(1) its generic weaving and recording functionality, (2) the
small footprint of SOK assemblies compared to the original
assemblies and (3) the negligible performance loss induced by
the SOK acquisition logic. However, the composition of S was
still considered quite labor-intensive. Also, it was suggested to
add graph filtering and critical path indication functionality to
Nuntia’s SOK print visualization features. Finally, participants
appreciated the separation of SOK acquisition and presentation
by means of a generic recording format.



Summary Empirical evaluation results can be summarized as
follows: (1) the technique was considered sound and viable
by developers, maintainers and managers, mainly because of
its flexibility in defining SOK acquisition criteria and its post-
compilation acquisition characteristics; (2) both the technique
and the tool were praised by managers expecting to gain
further knowledge and insights from the tool and technique
(once implemented), helping them to rapidly increase software
quality; (3) although still a prototype, Nuntia was already
valued by developers and maintainers because they expect
faster bug reproduction and fixing by using the tool.

Technical Details Operation recording of Paint.NET was
performed on a Core 2 Duo T7500, 2.20 GHz, with 2 GB of
memory, running Windows XP SP3. The size of the PaintDot-
Net.exe assembly of Paint.NET 3.35 was 691 kB before and
694 kB after weaving SOK acquisition logic for five methods.
The size of the SOK assembly descriptor generated for this
version was 720 kB, containing 2,833 method descriptions.
Regarding Paint.NET 3.36, the size of the assembly was 692
kB before and 695 kB after weaving. The size of the SOK
assembly descriptor (containing 2,835 method descriptions)
was 719 kB. Recording of CADProd operation was performed
on five different machines, all running Windows XP SP3.
Average recording duration was 18 minutes. The size of the
CADProd.exe assembly was 1,620 kB before and 1,676 kB
after weaving SOK acquisition logic for 86 methods. The
size of the generated SOK assembly descriptor was 1,025 kB,
containing 3,612 method descriptions.

VI. THREATS TO VALIDITY

The validity of the results is threatened by several factors.
Primary threats to the validity of the questionnaire results are
the number of focus group experts as well as the number
of participating CADComp employees. Due to the small
number of questionnaire participants, (differences between)
questionnaire results are not statistically significant. However,
considering the total number of participants that contributed
to the empirical evaluation as well as their position in their
organizations, we consider the questionnaire results indicative
and representative. Regarding the questionnaire answers, focus
group experts agreed modestly to statement S5 compared to
their answers to the other statements and to corresponding
answers of CADComp employees. Since there is no obvious
explanation for the drop of agreement regarding this statement,
further interviews will be needed to clarify this drop.

Internal validity of our empirical evaluation is threatened by
the size of S (i.e., SPaint.NET and SCADProd): although both
the experiment and the field study show that, without a priori
knowledge of the software source code and with a relatively
small set S , valuable SOK can be acquired, performance
effects of weaving acquisition logic at a large number of join
points (e.g. when S = M ) still have to be investigated.

External validity of the field study is threatened by the
number of experiments and case studies carried out. Although
the tool has been evaluated using three widely-used software

applications that are based on various techniques (Windows
Forms, WPF and ASP.NET), more experiments are needed to
establish the robustness of Nuntia’s weaving process, as well
as the performance of SOK assemblies generated by the tool.

While we believe that the evaluation of our SOK acquisition
and presentation technique demonstrates the utility and sound-
ness of the technique, further research is needed to establish
utility and soundness of the technique in combination with
other binary instrumentation tools.

VII. CONCLUSIONS AND FUTURE WORK

Although software vendors recognize the relevance and
potential of software operation knowledge, such knowledge
is frequently acquired ad hoc, impromptu and application-
specific. As a consequence, acquired operation data is la-
borious to analyze and compare, and a vendor’s existing
practices, processes and products are only limitedly supported
and improved by acquired SOK. We presented a technique that
(1) enables software vendors to acquire SOK independent of
target software, (2) allows vendors to get a uniform insight
in operation of their software in the field and (3) contributes
to reduction of software maintenance effort. Furthermore, we
presented a prototype tool that implements this technique, and
demonstrated the utility of the technique in both scientific
and industrial contexts through evaluation of the tool using an
eclectic set of empirical evaluation instruments. Three research
questions and seven propositions were formulated to determine
the utility and effectiveness of our technique.

RQ1 Does the technique allow generic software operation
recording?
Although Nuntia has limitations regarding weaving heavily
multi-threaded applications and supporting different platforms,
SOK acquisition logic was successfully woven into diverse ap-
plications from different, independent software vendors (P1):
Paint.NET (Windows Forms) from dotPDN LLC, ERPProd
(ASP.NET) from ERPComp and CADProd (WPF) from CAD-
Comp. Furthermore, operation of these applications (of which
CADProd was deployed at customer site) was successfully
recorded. While a formal proof showing that unwanted or
unexpected side effects will never be introduced, can not be
given, no such effects were observed during local operation
of resulting SOK assemblies (P2). Therefore, we consider this
question to be answered positively.

RQ2 Does the technique allow accurate recording and replay
of software operation?
As shown by analysis of SOK prints resulting from the
experiment and both industrial case studies, events recorded
in those prints by Nuntia were consistent with operation of
corresponding software during recording (P3). Also, empirical
evaluation shows that operation visualization and replays of
Paint.NET, ERPProd and CADProd corresponded with the
actual software operation during recording (P4). Given these
results, we consider this question to be answered affirmatively.
However, work is needed to mature textual representation of
complex datatype variables during replay.



RQ3 Does the technique support software maintenance and
operation comprehension?
Questionnaire results show that Nuntia provides valuable in-
sight in, and increases comprehension of, in-the-field software
operation as well as in-the-field end-user behavior (P5): the
25 questionnaire participants answered questions 1–4 with 4.3
(σ = 0.7), 4.2 (σ = 0.9), 4.0 (σ = 0.8) and 3.8 (σ = 0.9) on
average, respectively. Also, those results indicate that Nuntia
discloses knowledge that is not available without the tool (P6):
the participants answered S7 with 4.2 (σ = 0.6) on average.
Both propositions are also confirmed by Paint.NET experiment
and CADProd case study results. To a lesser extent, the
results confirm that Nuntia reduces the time needed to analyze
software operation failures (P7): participants answered S5 with
3.6 (σ = 1.0) on average. Also, focus group experts and case
study evaluation session participants stated that they expect
Nuntia to reduce maintenance effort even more when it is (1)
used to acquire SOK from pilot customers during the beta
stages of their software, and (2) integrated in release versions
of their software by default. Additional field evaluation is
needed to demonstrate more significant maintenance time
reductions.

Evaluation results indicate that the SOK acquisition and
presentation technique is considered to effectively reduce
maintenance effort, at least by the focus group experts and
case study evaluation session participants. Our implementation
of this technique, Nuntia, increased comprehension of in-the-
field software operation, and is considered to reduce the time
needed to analyze software operation failures. Furthermore, the
tool disclosed a substantial failure in the CADProd application
that was unknown to the CADProd development team until
SOK print analysis. Nuntia recorded, visualized and replayed
software operation accurately. Therefore, we consider our tech-
nique as an adequate answer to the main research question of
this paper, ‘How can software maintenance effort be reduced
through generic recording and visualization of operation of
deployed software?’.

Future work includes Nuntia development to increase the
robustness of the weaving process and SOK assembly oper-
ation, and to diminish performance effects induced by this
process even further. Also, more refined, post-weaving method
selection (e.g. ‘all methods that write to disk’), as well as
acquisition of end-user feedback knowledge during software
operation are part of future work. Additional case studies will
be performed to demonstrate more significant maintenance
effort reduction. Finally, integration of acquired SOK with
existing practices, processes and products will be investigated.

VIII. ACKNOWLEDGMENTS

We thank all software vendors and participants, particularly
G.W. Sloof, R. Dähne and A. van der Hoeven, for their
cooperation and contributions. We thank A. Zaidman and J.
Hage for their suggestions and comments.

REFERENCES

[1] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. C. Hunt, “Debugging in the
(Very) Large: Ten Years of Implementation and Experience,” in SOSP
’09: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. ACM, 2009, pp. 103–116.

[2] N. H. Madhavji, J. Fernandez-Ramil, Juan, and D. Perry, Software
Evolution and Feedback: Theory and Practice. John Wiley & Sons,
2006.

[3] H. van der Schuur, S. Jansen, and S. Brinkkemper, “A Reference Frame-
work for Utilization of Software Operation Knowledge,” in SEAA’10:
36th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE Computer Society, 2010, pp. 245–254.

[4] S. Jansen, S. Brinkkemper, and R. Helms, “Benchmarking the Customer
Configuration Updating Practices of Product Software Vendors,” in
ICCBSS ’08: Proceedings of the Seventh International Conference on
Composition-Based Software Systems. IEEE Computer Society, 2008,
pp. 82–91.

[5] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
Empirical Methods for Software Engineering Research,” in Guide to
Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D. I. K. Sjberg, Eds. Springer London, 2008, pp. 285–311.

[6] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox, J. Keung,
F. Kurniawati, M. Staples, H. Zhang, and L. Zhu, “Evaluating guide-
lines for reporting empirical software engineering studies,” Empirical
Software Engineering, vol. 13, pp. 97–121, 2008.

[7] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” MIS Quarterly, vol. 28, no. 1, pp. 75–
105, 2004.

[8] J. Bowring, A. Orso, and M. J. Harrold, “Monitoring Deployed Software
Using Software Tomography,” SIGSOFT Software Engineering Notes,
vol. 28, no. 1, pp. 2–9, 2003.

[9] A. Nusayr and J. Cook, “AOP for the Domain of Runtime Monitoring:
Breaking Out of the Code-Based Model,” in DSAL ’09: Proceedings of
the 4th workshop on Domain-specific aspect languages. ACM, 2009,
pp. 7–10.

[10] B. Kristjánsson and H. van der Schuur, “A Survey of Tools for Software
Operation Knowledge Acquisition,” Department of Information and
Computing Sciences, Utrecht University, Tech. Rep. UU-CS-2009-028,
2009.

[11] J. Clause and A. Orso, “A Technique for Enabling and Supporting
Debugging of Field Failures,” in ICSE ’07: Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 261–270.

[12] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging,” in
ISCA ’05: Proceedings of the 32nd annual International Symposium on
Computer Architecture. IEEE Computer Society, 2005, pp. 284–295.

[13] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk,
and A. van Deursen, “Understanding Execution Traces Using Massive
Sequence and Circular Bundle Views,” in ICPC ’07: Proceedings of
the 15th IEEE International Conference on Program Comprehension.
IEEE Computer Society, 2007, pp. 49–58.

[14] J. A. Jones, A. Orso, and M. J. Harrold, “GAMMATELLA: visualizing
program-execution data for deployed software,” Information Visualiza-
tion, vol. 3, no. 3, pp. 173–188, 2004.

[15] H. van der Schuur, S. Jansen, and S. Brinkkemper, “Becoming Respon-
sive to Service Usage and Performance Changes by Applying Service
Feedback Metrics to Software Maintenance,” in 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering - Workshop
Proceedings (ASE Workshops 2008). IEEE Computer Society, 2008,
pp. 53–62.

[16] “The Mono Project,” http://mono-project.com/.
[17] “.NET Framework,” http://msdn.microsoft.com/netframework/.
[18] “The PostSharp Platform,” http://www.postsharp.org/.
[19] L. Nachmanson, G. Robertson, and B. Lee, “Drawing Graphs with

GLEE,” Graph Drawing, pp. 389–394, 2008.
[20] “Paint.NET Roadmap and Change Log,”

http://www.getpaint.net/roadmap.html.


