
Sending Out a Software Operation Summary:
Leveraging Software Operation Knowledge for

Prioritization of Maintenance Tasks
Henk van der Schuur, Slinger Jansen, Sjaak Brinkkemper

Department of Information and Computing Sciences
Utrecht University

Utrecht, The Netherlands
{h.schuur, s.jansen, s.brinkkemper}@cs.uu.nl

Abstract—Knowledge of in-the-field software operation is ac-
quired by many software-producing organizations nowadays.
While vendors are effective in acquiring large amounts of valu-
able software operation information, many are lacking methods
to improve their software processes with such information. In
this paper, we attempt to improve the software maintenance
process by proposing a software operation summary: an overview
of a vendor’s recent in-the-field software operation, designed
to support software processes by providing software operation
knowledge. Particularly, we strive to improve prioritization of
software maintenance tasks by fostering the reach of consensus
between involved employees on such prioritization. Through an
extensive survey among product software vendors in the Nether-
lands, we confirm the need for a software operation summary,
and identify which crash report data are considered relevant as
a basis for the summary when it is used for prioritization of soft-
ware maintenance tasks. By means of a case study at a European
software vendor, a software operation summary composed using
crash report data is empirically evaluated. Results confirm the
lack of consensus experienced between engineers and managers,
and illustrate the value of the summary in fostering reach of
consensus between employee roles, particularly in preparation of
sprint planning and bug fixing activities.

I. INTRODUCTION

One of the most time-consuming and challenging tasks in
software maintenance is to reach consensus on the prioritiza-
tion of software maintenance tasks. Many factors are involved
in the process of software maintenance task prioritization, such
as the number and names of customers that have reported a
particular software failure, the severity and frequency of the
failure as well as a software vendor’s roadmap and available
resources [1]. All too often, prioritization discussions and de-
cisions of smaller software vendors are led by strong emotions
of employees involved in the prioritization process, rather than
by (f)actual knowledge. Employees may strongly focus on one
particular aspect of software maintenance, and for example
base their prioritization preferences on the interests and wishes
of a large customer or on their image of the software code
quality. Many software vendors are lacking in methods to
improve such processes with objective data and knowledge,
for example knowledge of in-the-field operation (and fail-
ures) of their software (i.e., software operation knowledge or
SOK) [2]. As a consequence, reaching consensus on software

maintenance task prioritization frequently is a time-consuming
process, resulting in flawed prioritization decisions, unsatisfied
customers and significant technical debt. The ISO standard
on the software maintenance process [3] defines software
maintenance as comprised of six activities, being Process
Implementation; Problem and Modification Analysis; Modifi-
cation Implementation; Maintenance Review/Acceptance; Mi-
gration; Retirement. In the context of this standard, software
maintenance task prioritization activities as well as reaching
consensus on such prioritization are covered by the Process
Implementation activity.

The main contribution of this paper is the Software Oper-
ation Summary (SOS) concept: an overview of recent in-the-
field software operation, which can be used for improvement
of software processes. We improve software maintenance
process implementations by fostering the reach of consensus in
software maintenance task prioritization through this software
operation summary concept.

The main research question is therefore ‘Can prioritization
of software maintenance tasks be improved through the con-
cept of a software operation summary?’, which is answered
through an extensive software maintenance survey held among
product software vendors in the Netherlands. Based on survey
results, we (1) confirm the lack of consensus on software
maintenance prioritization experienced between engineering,
management, and customer support, (2) establish the need for
an SOS by these employee roles, and (3) identify which crash
report data are considered relevant as a basis for an SOS that
fosters reaching consensus on prioritization of software main-
tenance tasks [3], [4]. To qualitatively support survey results,
we conducted a case study at a European software vendor,
through which we composed an SOS based on crash report
data and empirically evaluated its soundness and validity.

This paper is organized as follows. Section II further details
the SOS concept. Section III describes our research approach;
section IV details survey structure and contents. In section V,
survey results are analyzed, while in section VI the case study
results are presented. Next, we discuss research limitations
(section VII) and place our work in context (section VIII). Fi-
nally, conclusions and future work are presented in section IX.



II. SOFTWARE OPERATION SUMMARY

We define a software operation summary as an overview
providing knowledge of recent in-the-field software operation,
based on acquired software operation information. The op-
eration information needed for composition of the summary
can be acquired by vendors from their software operating
in the field, in a generic manner [5]. Both the operation
information on which an SOS is based, as well as the operation
knowledge provided by the summary are related to the in-the-
field performance, quality or usage of the software, or to the
feedback of end-users of the software [2]. An abstract SOS is
provided in figure 1.

The software operation history, which forms the main
component of the SOS, can be complemented with operation
meta data such as the operation history timespan and software
operation objectives that have been defined. As we show later
in this paper, frequent use of a software operation summary
(particularly, the software operation knowledge it provides)
may foster reaching consensus between employees on software
process issues. For example, it helps achieving consensus on
prioritization of software maintenance tasks (i.e., determining
when which bugs should be fixed, by whom).

Software Operation Summary
SOFTWARE OPERATION HISTORY

Performance 
(throughput, latency, ...)

Quality 
(#errors, #crashes, ...)

Usage
(UI traces, #clicks, ...)

End-user feedback 
(satisfaction, ratings, ...)

Timespan (start time, end time, duration, ...)
Sources (IP addresses, customer names, ...)
Objectives (process perspectives, ...)

OPERATION META DATA

...

Fig. 1. Software Operation Summary concept

In industry, at least three types of employees are involved
in software maintenance activities: customer supporters (filing
bug reports based on feedback of customers experiencing in-
the-field software failures), software engineers (developing
and testing fixes for the reported failures) and development
/ product managers (guiding the maintenance process, being
responsible for prioritizing maintenance tasks). Each of these
employees may advocate a particular focus in prioritizing
software maintenance tasks, and strive to improve a par-
ticular aspect within this focus. Customer supporters may
be focused on increasing the satisfaction of end-users using
the software. When prioritizing software maintenance tasks,
customer supporters prioritize bugs that are experienced by
the most influential and demanding customers. Software engi-
neers, on the other hand, may be concerned with the quality
of their software architecture and therefore prioritize bugs that

Engineering Management Support

Employee role Software
engineer

Development /
Product manager

Customer
supporter

Maintenance focus Software
architecture

Maintenance
process End-user

Improvement
aspect Quality Efficiency Satisfaction

SOK framework
perspective Development Company Customer

TABLE I
PERSPECTIVES ON SOFTWARE MAINTENANCE TASK PRIORITIZATION

are caused by poor or non-standard software design. Third,
development / product managers may strive to increase the
efficiency of the maintenance process itself, by maximizing the
number of completed maintenance tasks and minimizing task
duplication. By mapping those three employee foci to the SOK
framework [2], three perspectives on software maintenance
task prioritization can be observed. See table I.

In this paper, it is identified which crash report data are
considered relevant as a basis for an SOS that fosters reach-
ing consensus on prioritization of corrective and adaptive
maintenance tasks [3], [4]. Crash report data are successfully
used by Microsoft [6], [7], Apple [8], Canonical [9], and
Google [10] to improve their software architecture quality,
end-users satisfaction and maintenance process efficiency [11].
Which data are considered relevant, however, is situational and
depends on many factors, such as the type of product, the type
of customers and the type of employee using the data.

III. RESEARCH APPROACH

We structured the research approach using the SOK
integration template method [12]. The method is designed
for integration of software operation information in software
processes (e.g. software maintenance). The instantiated
method details the main research activities and related
concepts, and therewith describes how our study can be
repeated [13]. It is presented as a process-deliverable diagram
(PDD) [14] in figure 2. Significant research activities and
concepts are described below and in table II, respectively.

Operation information selection The first activity is con-
cerned with determining which SOFTWARE OPERATION IN-
FORMATION in crash reports is considered relevant in support-
ing the SOFTWARE MAINTENANCE TASK PRIORITIZATION
process through a SOFTWARE OPERATION SUMMARY.
First, we acquired empirical understanding of this process by
analyzing SOFTWARE MAINTENANCE TASK PRIORITIZATION
processes in industry (see section II, as well as [12]) and
answering questions like ‘How is the process implemented
in the organization?’ and ‘What are process dependencies?’
(Analyze target process). Next, we used industry experiences
and literature study results to identify issues with prioritization
of software maintenance tasks, on which we based
INTEGRATION OBJECTIVES (Identify task prioritization
issues in industry and literature). Third, we categorized
crash report data originating from various crash reporters
(Categorize crash report data; see table IV) to identify
SOFTWARE OPERATION INFORMATION demands of vendors



Identify maintenance task 
prioritization actors in industry

Analyze survey results

Identify relevant software 
operation summary data

Identify requirements for 
operation summary integration

ACTOR

SOFTWARE 
OPERATION SUMMARY

Categorize crash report data

Create and conduct maintenance 
task prioritization survey

[integration objectives met]

Identify task prioritization issues 
in industry and literature 

[else]

*

1..*

demands, utilizes 
with frequency

1..* *

integrates with

makes use of,
participates in

1..*

1..*

*

INTEGRATION 
OBJECTIVE

INFORMATION 
ANALYSIS RESOURCE

SOFTWARE OPERATION 
KNOWLEDGE

1..*

1..*

1..*

displays,
visualizes

1..*

* demands involves

1..*

1..*

Analyze maintenance prioritization 
processes in industry

SOFTWARE MAINTENANCE 
TASK PRIORITIZATION

SOFTWARE OPERATION 
INFORMATION

1..*

1..*
uses

advances

SOFTWARE ARCHITECTURE
QUALITY INCREASE

MAINTENANCE 
EFFICIENCY INCREASE

END-USER SATISFACTION 
INCREASE

SOFTWARE 
ENGINEER

DEVELOPMENT 
MANAGER

CUSTOMER 
SUPPORTER

1..*

1..*

Operation information selection

Integration requirements
identification

Operation information integration

Integrate operation
information

Evaluate integration results INTEGRATION 
EVALUATION

provides

1..*

1..*

supports

investigates1..* 1
1

1..*

investigates
SURVEY

CASE STUDY

1
1

Fig. 2. Research approach based on SOK integration template method

acquiring crash reports. Based on the process analysis
results and identified information demands, we have
designed and conducted a SOFTWARE MAINTENANCE TASK
PRIORITIZATION SURVEY (Create and conduct maintenance
task prioritization survey; see section IV).

Integration requirements identification concerns identifying
requirements for successful integration of the SOFTWARE
OPERATION SUMMARY with SOFTWARE MAINTENANCE
TASK PRIORITIZATION processes. First, we identified
ACTORS involved with SOFTWARE MAINTENANCE TASK
PRIORITIZATION by visiting software vendor sites (Identify
maintenance task prioritization actors in industry; see table I).
Next, we analyzed SURVEY results, for example to estimate
how often SOFTWARE OPERATION INFORMATION would be
used by the identified ACTORs (Analyze survey results; see
section V). Based on SURVEY results and prior sub activities,
relevant crash report data on which a SOFTWARE OPERATION
SUMMARY can be based, were identified (Identify relevant
software operation summary data; see section V-D). Finally,
requirements for successful integration of the summary in
SOFTWARE MAINTENANCE TASK PRIORITIZATION processes
were identified (Identify requirements for operation summary
integration; see section VI). For example, a requirement
could be that valuable SOFTWARE OPERATION KNOWLEDGE
is gained after integration of acquired operation information,
demanding INFORMATION ANALYSIS RESOURCEs).

Operation information integration concerns integration

Concept name Concept description

ACTOR
A person who demands and utilizes SOFTWARE OPERATION INFORMATION with a
certain frequency, potentially visualized by a SOFTWARE OPERATION SUMMARY, and
participates in SOFTWARE MAINTENANCE TASK PRIORITIZATION processes

CUSTOMER
SUPPORTER

An ACTOR providing (technical) assistance with software products or services

DEVELOPMENT
MANAGER

An ACTOR managing SOFTWARE ENGINEERs of a software development department

END-USER
SATISFACTION
INCREASE

One of the INTEGRATION OBJECTIVEs: an increase of the extent to which end-users
believe the software available to them meets their requirements

INFORMATION
ANALYSIS
RESOURCE

A physical or virtual entity of limited availability needed to analyze and interpret
SOFTWARE OPERATION INFORMATION and gain SOFTWARE OPERATION KNOWLEDGE

INTEGRATION
EVALUATION

A systematic determination of merit, worth, and significance of the performed integra-
tion of SOFTWARE OPERATION INFORMATION using criteria against the set of defined
INTEGRATION OBJECTIVEs involved

INTEGRATION
OBJECTIVE

Goal of integration of SOFTWARE OPERATION INFORMATION with SOFTWARE MAINTE-
NANCE TASK PRIORITIZATION involving SOFTWARE OPERATION KNOWLEDGE; gener-
alization of the SOFTWARE ARCHITECTURE QUALITY INCREASE, MAINTENANCE EFFI-
CIENCY INCREASE and END-USER SATISFACTION INCREASE INTEGRATION OBJECTIVEs

MAINTENANCE
EFFICIENCY
INCREASE

One of the INTEGRATION OBJECTIVEs: an increase of the extent to which wasted time
and effort in the SOFTWARE MAINTENANCE TASK PRIORITIZATION process are avoided

SOFTWARE
DEVELOPER

An ACTOR concerned with facets of the software development process, primarily (but
wider than) design and coding.

SOFTWARE
MAINTENANCE TASK
PRIORITIZATION

The process of assigning priorities to software maintenance tasks by ACTORs, which
is part of the Process Implementation activity of the ISO standard on the software
maintenance process [3]

SOFTWARE
OPERATION
INFORMATION

Information resulting from data mining and abstraction of software operation data
acquired from software operating in the field, possibly presented on a SOFTWARE
OPERATION SUMMARY

SOFTWARE
OPERATION
KNOWLEDGE

Knowledge of in-the-field performance, quality and usage of software, and knowledge
of in-the-field end-user software experience feedback [2]

SOFTWARE
OPERATION
SUMMARY

An overview of recent in-the-field software operation. Based on recent SOFTWARE
OPERATION INFORMATION, the summary provides SOFTWARE OPERATION KNOWLEDGE

SOFTWARE
ARCHITECTURE
QUALITY INCREASE

One of the INTEGRATION OBJECTIVEs: an increase of the extent to which software is
designed well, and how well the software conforms to that design

TABLE II
NAMES AND DESCRIPTIONS OF SIGNIFICANT CONCEPTS

of the SOFTWARE OPERATION SUMMARY with SOFTWARE
MAINTENANCE TASK PRIORITIZATION processes. We con-
ducted a CASE STUDY at a European software vendor to
compose and evaluate a SOFTWARE OPERATION SUMMARY.
First, the SOFTWARE MAINTENANCE TASK PRIORITIZATION
process was altered to allow integration of relevant SOFTWARE
OPERATION INFORMATION selected in ‘Operation information
selection’ (Integrate software operation information; see sec-
tion VI). Next, as part of the CASE STUDY, integration results
were evaluated (Evaluate integration results; see section VI).
If, based on a subsequent INTEGRATION EVALUATION, can be
concluded that INTEGRATION OBJECTIVEs are met, the result
of this activity is a SOFTWARE MAINTENANCE TASK PRIOR-
ITIZATION process that is effectively supported by acquired
operation information. Otherwise, the method is reinitiated
with the ‘Operation information selection’ activity.

This paper’s main research question (‘Can prioritization of
software maintenance tasks be improved through the concept
of a software operation summary?’) is answered based on
evaluation of the following six propositions:

P1 A software operation summary is expected to integrate with
current software maintenance practices.
P2 A software operation summary is expected to increase
knowledge of software architecture quality.
P3 A software operation summary is expected to increase
knowledge of end-user satisfaction.
P4 A software operation summary is expected to increase
knowledge of maintenance process efficiency.
P5 A software operation summary is expected to foster achiev-
ing consensus on software maintenance task prioritization.
P6 A software operation summary is expected to reduce the
time needed for software maintenance task prioritization.



Sections Questions Propositions

General

1. How many people are employed at your company? [Less than 5; 5 to 10; 10 to 20; 20 to 50; 50 to 100; 100 to 200; More than 200] N/A

2. How many end-users are using software that is produced by the company you are employed by? [Less than 50; 50 to 200; 200 to 500; 500 to 2,000; 2,000 to 10,000; 10,000
to 100,000; More than 100,000]

N/A

3. How many crash reports are received weekly by the company you are employed by? [Less than 50; 50 to 200; 200 to 500; 500 to 2,000; 2,000 to 5,000; 5,000 to 10,000; N/A] N/A

4. What is your role within the company you are employed by? [Engineering (software developer, software engineer, software architect, etc.); Management (Development manager,
product manager, etc.); Support (customer supporter, help desk employee, etc.)]

N/A

5. How many years of experience do you have in the field of information technology? [0..75] N/A

Current situation

6. How much time do you and your colleagues spend weekly on prioritization of software maintenance tasks? [Less than 1 hour; 1 to 5 hours; 5 to 10 hours; More than 10 hours] P1

7. How frequent do you experience a lack of consensus on prioritizing software maintenance tasks with each of the following colleagues? [Never (1); Rarely (2); Monthly (3);
Weekly (4); Daily (5); N/A]

• Engineering
• Management
• Support

P1

8. To which extent does knowledge of your software architecture play a role in prioritizing software maintenance tasks within your organization? [1 (Very minor role); 2; 3; 4; 5
(Very major role); N/A]

P1

9. To which extent does knowledge of end-user satisfaction play a role in prioritizing software maintenance tasks within your organization? [1 (Very minor role); 2; 3; 4; 5 (Very
major role); N/A]

P1

10. To which extent does knowledge of the efficiency of the maintenance process within your organization play a role in prioritizing software maintenance tasks within your
organization? [1 (Very minor role); 2; 3; 4; 5 (Very major role); N/A]

P1

Expectations

11. How often could you, in your current role, well use a software operation summary? [Never (1); Rarely (2); Monthly (3); Weekly (4); Daily (5); N/A] P1

12. With which of your activities is a software operation summary of most use to you? [...] P1

13. To which extent do you expect that a software operation summary increases your knowledge of each of the following: [Certainly not (1); probably not (2); Possibly (3); Probably
(4); Certainly (5); N/A]

• Software architecture quality
• End-user satisfaction
• Maintenance process efficiency

P2
P3
P4

14. To which extent do you expect to save time on prioritization of software maintenance tasks with a software maintenance summary? [Certainly not (1); probably not (2); Possibly
(3); Probably (4); Certainly (5); N/A]

P6

15. To which extent do you expect information contained in a software operation summary to foster the reach of consensus on prioritization of software maintenance tasks, with
each of the following colleagues? [Certainly not (1); probably not (2); Possibly (3); Probably (4); Certainly (5); N/A]

• Engineering
• Management
• Support

P5

Crash report data

16. Indicate which data types in your opinion contribute most to successful execution of the following activities: [List of data types listed in table IV]

• Determining which bug will result in the largest increase of software architecture quality, once fixed
• Determining which bug will result in the largest increase of end-user satisfaction, once fixed
• Determining which bug will result in the largest progress in the software maintenance process, once fixed

P2
P3
P4

TABLE III
SURVEY QUESTIONS AND PROPOSITIONS

The propositions are evaluated based on results of the
software maintenance task prioritization survey we conducted.

IV. MAINTENANCE TASK PRIORITIZATION SURVEY

As part of the Operation information selection activity
described in section III, a software maintenance task priori-
tization survey was designed and conducted to evaluate the
six propositions and to establish which operation information
from crash reports is considered relevant by the three employee
roles. The survey was reviewed and tested by peer researchers
and target respondents before publication. To acquire survey
respondents, the survey was announced to our educational and
professional networks, for example via an expert focus group
consisting of chief technology officers, product managers and
senior team leaders from industry. Also, the survey was noticed
and advertised by press in the Netherlands [15]. The survey
was composed of 16 questions divided over four sections (see
table III):
General The survey started with five questions to identify
the respondent, as well as the software vendor the respondent
is employed by. The first three questions were asked to get
insight in the size of the company the respondent is employed
at, in terms of number of employees, end-users and received
crash reports. The answer sets of these questions (as denoted
between square brackets in table III) were deducted from the
definition for small and medium-sized enterprises (SMEs)
of the European Commission [16]. The answer options of
question 3 contained a ‘Not Applicable’ option for vendors
not receiving any crash reports. Question 4 was asked to
identify the role of the respondent within its employing
company and could be answered with three options that

correspond to the roles in table I. Finally, question 5 was
an open question querying the respondent’s experience in
information technology. This section’s questions correspond
to none of the propositions.

Current situation This section is composed of five questions
that were asked to establish the situation at the respondent’s
organization regarding prioritization of software maintenance
tasks, and identify potential improvement areas. The first
two questions respectively queried the amount of time that
is spent on software maintenance prioritization tasks by
the respondent, as well as the frequency with which the
respondent experiences a lack of consensus with colleagues
on prioritizing software maintenance tasks. Questions 8, 9
and 10 each refer to a particular prioritization focus and
improvement aspect in table I and were asked to confirm the
importance of the maintenance foci within the respondent’s
company. Each of these questions correspond to an identical
set of answer options that is equivalent to a five-point Likert
item (see table III). All questions in the Current situation
section were asked to evaluate proposition P1.

Expectations As an introduction to the questions in this
section, the software operation summary concept was
introduced to respondents before asking the questions by
providing a basic definition of the concept, as well as a
description of three of its goals (providing knowledge of (1)
software architecture quality, (2) end-user satisfaction, (3)
maintenance process efficiency). Five questions related to
expected or potential use of a software operation summary



Vendor name Microsoft [6], [7] Apple [8] Canonical [9] Google [10] ERPComp CADComp
Crash reporter form Operating system service External library Product software feature

Category Unified data type Data type instance

Software

Application name Identifier General AppName Package – – Cause

Build version Build Info Version Information StackTrace, Package MODULE name – BuildVersion

Code file and line number causing the crash Backtrace – StackTrace FILE name – CauseLocation
Code file and line number presenting the crash (to end-
user) Backtrace – – FILE name – –

Database – – – – Database –

Edition – – – – – Edition

Error code Exception Codes Exception Code – – – –

Error message – – – – Exception details –

Error type Exception Type – – – Exception Type ExceptionType

Last user action (click, command, etc.) Backtrace – StackTrace FUNC name Action name –

Last operation context (page, screen, etc.) – – – – Page name –

Localization – – – – – Localization

Memory address Exception Codes Exception Address – FUNC address – MemoryLocation

Module causing the crash Backtrace – StackTrace – CauseModule

Module presenting the crash (to end-user) Backtrace – – – Page name –

Operation environment (operating system, browser) OS Version System Information DistroRelease,
ProcEnviron

MODULE
operatingsystem

OS, Browser, page
data –

Process name Process Identifier – – – – –

Processor architecture Code Type System Information – MODULE architecture – ProcessorType

Session type – – – – Session data –

Thread name Crashed Thread – – – – –

Version Version Version Information Package – – –

End-user

Comments accompanying report – – – – – EnduserComments

Company name – – – – Customer CompanyName

Country – – – – – SourceCountry

IP address IP address – – – IP address IPAddress

Language – – – – – Language

License number – – – – – LicenseNumber

User name – – – – User UserName

TABLE IV
CATEGORIZATION OF CRASH REPORT DATA TYPES

were asked in this section to establish the need for, and
potential of such a summary based on crash report data.
Particularly, questions 11 and 12 were asked to establish
expected integration of a software operation summary with
the respondent’s current activities and requirements. We
chose to let question 12 be an open question to prevent bias
of respondents, which, for example, could be induced by
providing a predefined set of activities. Questions 13, 14
and 15 query the respondent’s expectations concerning the
effects of using a software operation summary, respectively
in terms of knowledge increase, time saving and consensus
reach. The answer options of these three questions represent
a five-point Likert item (see table III). Questions 11 and
12 were asked to evaluate proposition P1, question 13 to
evaluate propositions P2, P3 and P4 and questions 14 and 15
were asked to evaluate propositions P5 and P6, respectively.

Crash report data The last section of the survey is concerned
with what crash report data are considered relevant input for
prioritization of corrective and adaptive software maintenance
tasks. A list of answer options in the form of unified crash
report data types was assembled based on crash report data
types of existing, widely-used and widely-known crash report-
ing techniques. See table IV.
Crash reporting techniques from Microsoft [6], [7], Apple [8],
Canonical [9] and Google [10], as well as those of two
European software vendors called ERPComp and CADComp
(actual vendor names have been anonymized for confidential-
ity reasons), were analyzed and compared to assemble the
answer list with data types that was presented to respondents
as an introduction to this section. ERPComp produces an
online ERP solution that is used by about 17,000 customers;

CADComp produces an industrial drawing application targeted
on the Microsoft Windows platform and is used by more
than 4,000 customers in five countries. Both vendors are
headquartered in the Netherlands and were visited on-site.
To ease understanding and answering of this question for
respondents, data types were categorized into two categories:
software and end-user. One additional answer option ‘Other’
was added to the list of 28 crash report data type answer
options, to allow respondents to add additional data types
matching their crash report data structure. Question 16 was
asked to evaluate propositions P2, P3 and P4.

As listed in table III, questions 7, 13, 15 and 16 had to
be answered for three question components: questions 7 and
15 had to be answered for each of the software maintenance
task prioritization perspectives (Engineering, Management and
Support; see table I) and question 13 and 16 had to be
answered for each of the prioritization foci and improvement
aspects of these perspectives. These questions were designed
as such to expose relations between employee roles, mainte-
nance foci and improvement aspects in reaching consensus on
prioritization of software maintenance tasks.

V. ANALYSIS OF SURVEY RESULTS

In total, 136 respondents from about 72 different software-
producing companies1 participated in our survey (n =
136). All of the respondents completed section General, 111
(81.6%) completed Current situation, 97 (71.3%) completed
Expectations and 79 (58.1%) completed the final section of
the survey, Crash report data. Those percentages should be

1Survey respondents participated with 72 unique IP addresses (addresses
that only differed on third or fourth octet were considered identical).



taken into account in further analysis of survey results, which
is provided in the following sections.

A. General

Most respondents are employed by a vendor that employs
more than 200 people (49.3%) or 20 to 50 people (15.4%).
Almost three-quarter of the respondents (72.1%) is employed
by a vendor that serves more than 100,000 end-users (35.3%),
10,000 to 100,000 end-users (18.4%) or 2,000 to 10,000
end-users (18.4%). Most vendors (66.9%) receive less than
50 crash reports (52.9%) or between 50 and 200 (14.0%)
crash reports per week (19.1% of the respondents answered
‘N/A’ to question 3). Respondents were evenly distributed over
employee roles: 28.7% identified its role as part of Engineering
(12.4 years of experience on average, σ = 7.6), 36.0% as part
of Management (15 years of experience on average, σ = 7.2
years), and 35.3% as part of Support (9.6 years of experience
on average, σ = 8.9 years). In total, respondents have 1676
years of experience (12.3 years on average, σ = 8.3 years).

B. Current Situation

Of the 111 respondents that have answered the first question
of this section, most (55.9%) spend 1 to 5 hours weekly on
prioritization of software maintenance tasks. 24.3% indicated
to spend less than 1 hour on these tasks weekly, while 10.8%
indicated to spend more than 10 hours weekly on prioritization
of software maintenance tasks.

Figure 3a visualizes the lack of consensus experienced by
the responding software engineers, customer supporters and
managers, as inquired through question 7. Lack of consensus
is most frequently experienced by (1) support with engineering
(3.17 on average: more often than monthly), (2) engineering
with management (3.00 on average: monthly) and (3) man-
agement with engineering (2.93 on average: less often than
monthly). Also, engineering and management experience lack
of consensus with respectively management and engineering
most frequently, compared to other roles. We believe the cause
of this outcome is related to the nature of the challenges that
are faced by the two roles (i.e., technical versus managerial).
Except for support, employees least frequently experience lack
of consensus with employees having the same role.

Results of questions 8 to 10 (role of maintenance foci and
corresponding improvement aspects) are displayed in figure 4.
It is remarkable that for all employee roles, end-user satisfac-
tion plays the largest role in prioritizing software maintenance
tasks, software architecture quality the second-largest, and
maintenance process efficiency relatively the smallest role.
Comparing employee roles per maintenance focus, it should
be noted that software architecture quality plays the lowest
role for engineering. This may be caused by the confidence
software engineers have in their work: of the three employee
roles, engineers have the most knowledge of, and may be the
most confident about the quality of their software architecture.
Maintenance process efficiency plays the highest role for
support (possibly because they wish as much in-the-field
software failures reported by customers as possible to be fixed

Engineering Support

Management

2.93
(σ = 1.10)

2.83
(σ = 1.08)

2.67
(σ = 0.94)

2.52
(σ = 0.91)

2.85
(σ = 1.21)

2.72
(σ = 1.26)

3.00
(σ = 1.02)

3.17
(σ = 1.23)

2.81
(σ = 0.98)

Engineering Support

Management

3.74
(σ = 0.93)

3.77
(σ = 1.05)

3.84
(σ = 0.90)

3.96
(σ = 0.98)

3.48
(σ = 1.00)

3.38
(σ = 1.15)

3.57
(σ = 0.92)

3.73
(σ = 1.06)

3.48
(σ = 0.71)

(a) (b)

(max(value) - 0.25) < value < max(value)
(max(value) - 0.50) < value < (max(value) - 0.25)

0 < value < (max(value) - 0.50)

Fig. 3. (a): average frequency with which lack of consensus is experienced
between the different employee roles (question 7); (b): average extent to which
the employee roles expect SOS information to foster the reach of consensus
(question 15). Thicker arrows indicate higher frequencies and expectations

Fig. 4. Importance of the maintenance foci for the different employee roles
(questions 8–10)

as soon as possible), and end-user satisfaction is approximately
equally important for all employee roles.

Although the lack of consensus between the three employee
roles can therefore not be justified by absolute differences in
maintenance foci, it could be justified by relative differences.
For example, the role software architecture quality plays in
prioritization of software maintenance tasks increases as em-
ployee roles have more direct communication with customer’s
end-users. In software-producing organizations, customer sup-
porters are typically directly confronted with bugs and crashes
experienced by end-users than management. Although en-
gineering departments typically provide third line support,
communication with end-users is less direct and frequent than
between management and end-users.

C. Expectations

All employee roles would like to use a software operation
summary about every three weeks (average usage frequencies
are all more often than monthly: engineering 3.46 (σ = 0.76),
management 3.59 (σ = 0.78), support 3.39 (σ = 0.90)).
To illustrate the potential applications of such a summary,
we created a frequency list of all responses to question 12.
Based on analysis of this list, a software operation summary



1! 4! 5!

13! 16!

0!

5!

14!

16!
4!

2!

1!

9!

16!

10!

0!

5!

10!

15!

20!

25!

30!

35!

40!

45!

50!

Certainly not! Probably not! Possibly! Probably! Certainly!

End-user satisfaction! Software architecture quality! Maintenance process efficiency!

Engineering Management Support

0!
3! 4!

11!

6!

0!

4!

7!

6!

8!

1!

4!

7!

10!

3!

0!

5!

10!

15!

20!

25!

30!

Certainly not! Probably not! Possibly! Probably! Certainly!
0! 2!

6!
10! 12!

0!

2!

6!

9!

12!

2!

2!

7!

10!

9!

0!

5!

10!

15!

20!

25!

30!

35!

Certainly not! Probably not! Possibly! Probably! Certainly!

Fig. 5. Expectations per employee role regarding the extent to which a software operation summary would increase their knowledge (question 13)

is expected to be most of use during activities related to sprint
and release planning, bug fixing and software development, as
well as during evaluations (of, for example, software operation
at a particular customer, or the most recent sprint).

Expectations of engineering, management and support em-
ployees regarding the extent to which a software operation
summary could increase their knowledge of software archi-
tecture quality, end-user satisfaction and maintenance process
efficiency (question 13) is visualized by figure 5. With an
SOS, all employee roles expect to save time on software
maintenance task prioritization to reasonable extent: the modus
of the answers to question 14 was ‘Possibly’ for engineering
(average: 3.5, σ = 1.00), and ‘Probably’ for management (av-
erage: 3.38, σ = 0.92) and support (average: 3.24, σ = 0.97).
Figure 3b visualizes the extent to which the different employee
roles expect information in a software operation summary to
foster the reach of consensus (question 15). First of all, the
parties that experience a lack of consensus the most (support
with engineering, engineering with management, management
with engineering), expect an SOS to foster reach of consensus
with the colleagues with which they experience this lack of
consensus. As opposed to support, engineering and manage-
ment both expect an SOS to foster reach of consensus the
most with colleagues that have the same role. Of all employee
roles, management has the highest expectations in reaching
consensus with other employee roles. In absolute terms, high-
est expectations are expressed by engineers, expecting an SOS
to foster reach of consensus with other engineers with an
average of 3.96 (σ = 0.98, modus = ‘Certainly’). Finally, most
employees consider an SOS fostering the reach consensus
with colleagues on software maintenance task prioritization
as probable (modus = ‘Probably’).

D. Crash Report Data

As stated in section IV, the last survey section of the survey
is concerned with identification of which crash report data are
considered relevant as a basis for an SOS that fosters reaching
consensus on prioritization of software maintenance tasks. In
view of this fact, we focus on the most-selected data types per
maintenance focus per employee role. The more employees
differ in data type selection, the more data types are involved
in determining which bugs should be fixed to reach the largest
increase of the three maintenance foci. See figure 6.

Regarding the software architecture quality focus, the most-
selected data types are all related to software failure cause
identification: data types ‘Code file and line number causing
the crash’ and ‘Module causing the crash’ were most selected
by engineering and management, while support selected data
types ‘Application name’ and ‘Thread name’ the most. End-
user satisfaction data types are more related to identification
of the customer: ‘Company name’ and ‘Application name’
were data types most selected by engineering and manage-
ment, while support selected data types ‘Company name’ and
‘Comments accompanying report’ the most. Finally, concern-
ing maintenance process progress, some most-selected data
types are related to software releases over time (i.e., ‘Build
version’ and ‘Version’). ‘Build version’ and ‘Code file and line
number presenting the crash’ were data types most selected by
management, ‘Build version’, ‘Database’ and ‘Module cause
crash’ were most selected by engineering, and support selected
‘Code file and line number presenting the crash’, ‘Code file
and line number causing the crash’ and ‘Version’ the most.

In total, four additional data types were suggested by
respondents using the ‘Other’ field: (number of crash reports
per) ‘Performance peak, Slow request’, ‘Code file / class’,
‘GUI element’ and ‘Software configuration’. While the first
suggestion is out of the scope of this paper (not being part of
typical crash report data) and the second was already part of
the presented data types (code file and line number, module),
the latter two are taken into account for future research.

Focussing on the expectations for a software operation
summary that is designed for fostering consensus on
prioritization of software maintenance tasks, survey results
can be summarized as follows:

• All employee roles would like to use such an SOS about
every three weeks, particularly in preparation of (sprint)
planning, (software) development and bug fixing

• Such an SOS is expected to particularly foster reach of
consensus between managers and other employees, engi-
neers themselves and between supporters and engineers

• Crash report data supporting identification of software
failure causes, customers experiencing the failures, and
software releases used by customers over time, form the
basis of such an SOS.



Software architecture quality End-user satisfaction Maintenance process progress

7! 12! 15!

12! 16!
11!

11!

14!

13!

1!
7!

15!

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

100%!

Engineering! Management! Support!

Thread name!

Module causing the crash!

Code file and line number 
causing the crash!

Application name!

11! 17!
12!

8! 14! 16!

13! 20! 16!

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

100%!

Engineering! Management! Support!

Company name!

Comments 
accompanying report!

Application name!

8!
9!

5!

3!
10!

8!

4!
8! 10!

5!
8! 4!

5!
6!

3!

4! 6!
8!

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

100%!

Engineering! Management! Support!

Version!

Module causing the crash!

Database!

Code file and line number 
presenting the crash!

Code file and line number 
causing the crash!

Build version!

Fig. 6. Most-selected crash report data types per maintenance focus per employee role. The data types are expected to contribute the most to successful
determination of which bugs will result in the largest increase of software architecture quality, end-user satisfaction and maintenance process progress, once
fixed (question 16). The data types form the basis of an SOS that fosters consensus on prioritization of software maintenance tasks

VI. SENDING OUT AN SOS: CASE STUDY RESULTS

To further establish the soundness and validity of the SOS
concept, in addition to survey results we conducted a case
study [17] of one month at CADComp, during which we
composed an SOS based on crash report data. Having attended
development meetings and plenary company meetings, we
observed lack of consensus between (product) management,
and both development and support employees on prioritization
of software engineering work items: based on received crash
reports, the former employees believed that in-the-field product
quality was increasing and implementation of new features
should have first priority, while both latter employee groups
contrarily believed that product quality was decreasing and
bug fixing should have first priority.

Based on our observations at CADComp, we created an
SOS in the form of an ASP.NET MVC web application that
was deployed at the vendor’s intranet. Derived from CAD-
Comp crash report data, the SOS presents software operation
information in the form of graphs that visualize recent software
operation history. Figure 7 shows one of the graphs that
visualizes recent software quality: crash reports sent by various
in-the-field releases of the CADComp software are distributed
over the code file names (partly hidden for confidentiality
reasons) and line numbers that caused the particular crash.

Apart from which code is causing in-the-field software
failures in which version of the software, this SOS graph pro-
vides knowledge about crash report acquisition service outages
(A), how in-the-field software quality improves over time (B),
which code forms structural weaknesses in the software (C),
when the software is barely used by end-users (D) and when
new major bugs are introduced (E). Furthermore, the SOS
provides operation meta data such as operation environment
statistics and customer names corresponding to the crash.

The soundness and validity of the SOS in the context of
CADComp’s work item prioritization were evaluated through
seven unstructured interview sessions [17] with three product
managers, two senior software engineers and two customer
supporters. Although the product managers initially asked for
help with interpreting the SOS graph depicted in figure 7
(they assumed the graph illustrated a linear increase of crash
report submissions), all seven interviewees indicated that the
graph increased awareness of in-the-field software operation

Crash report 
acquisition service outage

Low level of
software usageCode files 

structurally causing failures

Failures caused
by new code

Software quality
improvement

C
od

e 
fil

e 
an

d 
lin

e 
nu

m
be

r c
au

si
ng

 th
e 

cr
as

h

A

B

C
D

E

Version

Submission date

Fig. 7. A software quality graph of the SOS implemented at CADComp,
showing crashes per ‘code file and line number causing the crash’ over time

throughout the organization, and expected the SOS applica-
tion to contribute to the reach of consensus on work item
prioritization (new features versus maintenance tasks). Also,
software engineers suggested to only include crash reports
in the SOS graph that form structural problems (since those
problems cause the most crashes, and result in the highest
increase in software architecture quality, once solved). Finally,
customer supporters expected that on the long term, frequent
usage of the software operation summary would result in an
increase of customer satisfaction.

Based on results of both the CADComp case study as
well as the maintenance task prioritization survey, the six
propositions defined in section III are evaluated. Survey results
show that most employees spend 1 to 5 hours weekly on
software maintenance task prioritization, during which lack
of consensus is frequently experienced, particularly with em-
ployees from engineering (monthly on average). All employee
roles could well use a software operation summary about
every three weeks, particularly during in preparation of (sprint)
planning, (software) development, and bug fixing activities.
Therefore, we consider proposition P1 (A software operation
summary is expected to integrate with current software main-
tenance practices) to be correct. The next three propositions (A
software operation summary is expected to increase knowledge
of software architecture quality (P2), end-user satisfaction
(P3), maintenance process efficiency (P4)) are also confirmed



by survey results: employees from engineering, management
and support mostly consider a software operation summary to
increase knowledge of software architecture quality, end-user
satisfaction and maintenance process efficiency as probable.
Also, most respondents (28%) consider an SOS fostering
the reach consensus with colleagues in terms of software
maintenance task prioritization as probable. Proposition P5 (A
software operation summary is expected to foster achieving
consensus on software maintenance task prioritization) is
therefore considered to be correct. Proposition P6 (A software
operation summary is expected to reduce the time needed
for software maintenance task prioritization) appears to be
relatively difficult to evaluate: while on average, saving time
on prioritization of software maintenance tasks through SOS
usage is considered ‘possible’ by nearly all respondents,
further research is needed to demonstrate reduction of the time
needed for software maintenance task prioritization through
SOS usage. We therefore consider the correctness of this
proposition to be undetermined until further research on this
subject has been performed. Finally, case study results support
propositions P1, P2, P3 and P5.

VII. THREATS TO VALIDITY

The validity of the study results is threatened by several fac-
tors. First, survey-related aspects (as described by Kitchenham
and Pfleeger [13]) threaten construct validity of the research.
For example, although 136 respondents initiated the survey,
79 (58.1%) completed it. This may be grounded in the type,
order and number of survey questions. Also, as a consequence
of the fact that the survey was anonymous, we can not
exactly determine the number of distinct software-producing
organizations that have responded to the survey, as well as the
distribution of employee roles per organization. Furthermore,
while concepts (such as the SOS) were introduced to respon-
dents before questions related to these concepts were asked, it
might be that common understanding among respondents was
not fully reached. Although statistical relevance of (differences
in) survey results may be limited by these factors, we believe
the results are indicative and representative for the product
software industry in the Netherlands.

Second, internal validity of the study may be threatened
by the fact that in this study, we focus on corrective and
adaptive software maintenance tasks, while preventive and
perfective tasks are considered outside the scope of the study
considering the types of data generally provided by crash
reports. Conclusions based on the survey results might appear
to be biased to certain extent. We acknowledge, however, that
different types of operation information can be used to meet
different requirements in optimizing maintenance activities
and processes (as expressed in section VI).

Third, external validity of our research may be threatened
by two factors. First, survey results could be dominated by
respondents of a small number of software vendors. Second,
in this study we focus on corrective and adaptive maintenance
tasks. Both factors may influence the extent to which the
results are applicable to other (types of) vendors: survey results

might to certain extent be typical for software vendors in
the Netherlands, and therefore are limitedly generalizable to
vendors outside these categories. Although we believe that
the results of this study are representative for many vendors,
further research is needed to mitigate these threats.

VIII. RELATED WORK

Many research efforts cover the use of information frag-
ments to improve people’s practices, processes and workflows.
However, to improve those through software operation knowl-
edge is only considered by few. Kim et al. [18] propose a
machine learning approach for predicting top software failures
to prioritize maintenance efforts. Although their approach ap-
pears to be promising (75%–90% accuracy), it only considers
the frequency of a crash as a prioritization factor: it does not
consider software operation at particular customers, or involve
the efficiency of the maintenance process, for example.

To determine the contents and investigate the quality of bug
reports (as opposed to crash reports, which are researched
in this paper), Zimmerman et al. conducted a survey among
developers of Apache, Eclipse and Mozilla [19]. Their conclu-
sions (e.g. well-written, complete reports are likely to get more
attention than poorly written or incomplete ones) may also
apply to the SOS concept. However, their study only involves
software engineers and does not consider management or
customer support employees.

As an attempt to answer questions asked by software
developers during their daily work, Fritz and Murphy [20]
have introduced an information fragment model that supports
composition of information from multiple sources (among
others, bug reports) and supports the presentation of composed
information in various ways. The authors show that the model
can support 78 questions developers want to ask about a
development project. While we recognize the value of combin-
ing information from multiple sources for answering diverse
questions asked by one type of people, in our study we use one
source of information (crash reports) to answer one question
(how should software maintenance tasks be prioritized?) asked
by multiple types of employees (engineering, management and
customer support). Involving and combining multiple sources
of information could lead to lengthy discussions regarding
reason of information involvement as well as weight of the
information in the resulting combination, which could delay
the reach of consensus between different employee roles.

IX. CONCLUSIONS AND FUTURE WORK

Software-producing organizations increasingly recognize
the relevance and potential of software operation information
visualizations on operation dashboards, reports and other me-
dia. However, all too often in industry, vendors experience
difficulties in selecting and presenting operation information
in such a way that besides providing software operation
knowledge, visualized software operation information actually
contributes to improvement of software process execution.
Software maintenance task prioritization, for instance, is often
time-consuming because reaching consensus between involved



employees regarding this prioritization is tedious: involved
employees have different roles, each with corresponding con-
cerns, maintenance foci and improvement aspects.

In this paper, we propose the concept of software operation
summary (SOS): an overview of recent in-the-field software
operation based on acquired software operation information,
which can be used to improve execution of software processes.
For example, improving the process of software maintenance
task prioritization by fostering the reach of consensus between
employees on such prioritization.

We report on an extensive software maintenance task prior-
itization survey, held among 136 product / development man-
agers, software developers and customer supporters. Survey
results confirm the demand for an SOS that contributes to
reach of consensus on software maintenance task prioritiza-
tion, particularly in preparation of (sprint) planning, (software)
development and bug fixing activities. As a basis for such an
SOS, particularly crash report data supporting identification
of (1) software failure causes, (2) customers experiencing the
failures, and (3) software releases used by customers over time,
are considered relevant. Furthermore, we report on a case study
during which we compose an SOS based on crash report data,
and empirically evaluate it at a European software vendor.
Case study results show that an SOS increases awareness of
in-the-field software operation throughout software-producing
organizations, and indicate that it contributes to the reach
of consensus on work item prioritization (e.g., new features
versus maintenance tasks). Based on survey and case study
results (through which the six propositions, defined to establish
the soundness and validity of the SOS concept, are evaluated),
we consider the main research question of this paper (Can pri-
oritization of software maintenance tasks be improved through
the concept of a software operation summary?) to be answered
positively.

While this paper focuses on the use of a software operation
summary in the context of software maintenance task prioriti-
zation, an SOS can be used to support numerous practices and
processes. Using the SOK integration template method [12],
software vendors can tailor the form and contents of a software
operation summary to their needs and requirements, and
therewith optimize integration and presentation of software
operation information. Vendors should ensure that recent oper-
ation information is actually available at the time and with the
frequency an SOS is used. Also, selected underlying data types
should correspond with the needs of the involved employees.
Vendors should be aware, however, that too many data types
underlying their SOS may limit the extent to which reach of
consensus between their employees is fostered.

Future research activities include extension and concretiza-
tion of the software operation summary concept: concrete
SOSes that are tailored to processes other than software main-
tenance, will be developed and empirically validated, to further
show its viability in terms of measurable process efficiency
increases. Finally, it will be researched which visualization
techniques are most appropriate for presenting (operation) data
on software operation summaries and other media.

ACKNOWLEDGMENTS

We would like to thank all participating software vendors
and their employees for sharing their ideas and experiences.
In particular, we thank Matthijs Steen for his suggestions.

REFERENCES

[1] L. Lehtola and M. Kauppinen, “Suitability of Requirements Prioritiza-
tion Methods for Market-driven Software Product Development,” Softw.
Process: Improvement and Practice, vol. 11, no. 1, pp. 7–19, 2006.

[2] H. van der Schuur, S. Jansen, and S. Brinkkemper, “A Reference Frame-
work for Utilization of Software Operation Knowledge,” in SEAA’10:
Proceedings of the 36th EUROMICRO Conference on Software Engi-
neering and Advanced Applications. IEEE Computer Society, 2010,
pp. 245–254.

[3] International Organization for Standardization, “ISO/IEC 14764:2006:
Software Engineering — Software Life Cycle Processes — Mainte-
nance,” 2006.

[4] T. M. Pigoski, Practical Software Maintenance: Best Practices for
Managing Your Software Investment. John Wiley & Sons, Inc., 1997.

[5] H. van der Schuur, S. Jansen, and S. Brinkkemper, “Reducing Main-
tenance Effort through Software Operation Knowledge: An Eclectic
Empirical Evaluation,” in CSMR’11: Proceedings of the 15th European
Conference on Software Maintenance and Reengineering. IEEE
Computer Society, 2011, pp. 201–210.

[6] “Microsoft Online Crash Analysis: Error Report Contents Information,”
2005, http://oca.microsoft.com/en/dcp20.asp, verified 20/06/2011.

[7] “How to: Configure Microsoft Error Reporting,” 2006,
http://msdn.microsoft.com/en-us/library/bb219076(v=office.12).aspx,
verified 20/06/2011.

[8] “Mac OS X Reference Library – TN2123: CrashReporter,” 2010,
http://developer.apple.com/library/mac/technotes/tn2004/tn2123.html,
verified 20/06/2011.

[9] “Ubuntu Wiki – Apport,” 2010, https://wiki.ubuntu.com/Apport,
verified 20/06/2011.

[10] “google-breakpad – Crash reporting,” 2010,
http://code.google.com/p/google-breakpad/, verified 20/06/2011.

[11] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. C. Hunt, “Debugging in the
(Very) Large: Ten Years of Implementation and Experience,” in SOSP
’09: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. ACM, 2009, pp. 103–116.

[12] H. van der Schuur, S. Jansen and S. Brinkkemper, “If the SOK Fits,
Wear It: Pragmatic Process Improvement through Software Operation
Knowledge,” in PROFES’11: Proceedings of the 12th International
Conference on Product Focused Software Development and Process
Improvement. Springer, 2011.

[13] B. A. Kitchenham and S. L. Pfleeger, “Principles of Survey Research
Part 3: Constructing a Survey Instrument,” vol. 27, pp. 20–24, 2002.

[14] I. van de Weerd and S. Brinkkemper, “Meta-Modeling for Situational
Analysis and Design Methods,” in Handbook of Research on Modern
Systems Analysis and Design Technologies and Applications.
Information Science Reference, 2008, pp. 38–58.

[15] “Universiteit onderzoekt prioriteren onopgeloste bugs (University
researches prioritization of unsolved bugs),” 2011,
http://www.automatiseringgids.nl/technologie/software/2011/4/onderzoek-
naar-softwareonderhoud.aspx, verified 20/06/2011.

[16] The new SME definition, ser. Enterprise and Industry Publications.
Office for Official Publications of the European Communities, 2005.

[17] R. K. Yin, Case Study Research: Design and Methods (Applied Social
Research Methods), fourth edition. ed. Sage Publications, 2009.

[18] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung, and S. Park, “Which
Crashes Should I Fix First?: Predicting Top Crashes at an Early Stage
to Prioritize Debugging Efforts,” IEEE Transactions on Software
Engineering, 2011.

[19] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schrter, and
C. Weiss, “What Makes a Good Bug Report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618–643, 2010.

[20] T. Fritz and G. C. Murphy, “Using Information Fragments to Answer
the Questions Developers Ask,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering — Volume 1, ser.
ICSE’10. ACM, 2010, pp. 175–184.


