
Thesis for the Degree of Master of Science

SKU: Software Vendor Meets End-user

On the Utilization of Service Software Knowledge in a

Software Supply Network

Henk van der Schuur

INF/SCR-07-77

August 2008

Supervisor Dr. S. R. L. Jansen Universiteit Utrecht

Second supervisor Prof. dr. S. Brinkkemper Universiteit Utrecht

Daily supervisors M. van der Elst B. Stabiplan B.V.
J. Schlingmann Stabiplan B.V.

Center for Organization and Information
Department of Information and Computing Sciences
Utrecht University
Utrecht, The Netherlands

Stabiplan B.V.
Bodegraven, The Netherlands

Abstract

Nowadays, a lot is asked from software vendors: their organizations have to be dynamic and agile,
highly responsive to changes, while developing software at high speed, low cost and according to
high quality standards. Two trends can be observed. First, a shift from object-oriented devel-
opment to service-oriented development can be perceived. Secondly, while software vendors may
have implemented a particular form of software usage data gathering mechanism, few software
vendors actually use the data that is collected. Software vendors are unaware of how their soft-
ware performs in the field and do not know what parts of their software are used and appreciated
most and have little knowledge about the behavior of the software and its environment.

In this thesis, a concept called Service Knowledge Utilization (SKU) is introduced as an approach
to increase a software vendor’s flexibility, and responsiveness to changes in the performance and
usage of its service-based online software, at specific customers and concerning its software in
general. Furthermore, the SKU reporting toolset is presented. The real-time SKU report quan-
tifies the usage and feedback of a software vendor’s service-based software and contains three
metrics-based indices that express software quality. Furthermore, a software prototype that pro-
vides a concrete SKU implementation is presented. The prototype is based on aspect-oriented
programming techniques and includes data gathering and SKU report generation functionality.

An extensive case study at a Dutch software vendor was performed to validate both the report and
the prototype. While software usage data gathering may easily result in significant performance
loss of the software being traced, results show that the integration of the prototype with target
software has a negligible effect on the performance of the target software. Research validation
shows that the SKU report is considered valuable and supportive in management meetings on
release management, requirements management and software maintenance.

By using the SKU approach, vendors can make informed decisions with respect to software re-
quirements management and maintenance. While validation shows high potential of the approach,
a successful implementation will require change management at the software vendor.

i

Preface

This master’s thesis is the result of eleven months of quite demanding and challenging work. It
forms the conclusion of the bachelor and master courses I did during the past five years. Simulta-
neously, this thesis characterizes the type of contribution I want to deliver to the research world
of information and computing sciences and to the world in general: inventive, theoretically and
scientifically sound, and with a decent (and validated) level of practical, ‘real world value’ and
applicability.

As I experienced during these months, the process of delivering that type of contributions can be
tough and difficult. But simultaneously, the process can be exciting and gratifying. It challenges
the mind and the gray matter, especially in its initial and final phases. I decided to express these
experiences succinctly in the quotes that precede the first chapter of this thesis.

The last quote is from the Bible. The passage that is referred to says that knowledge tends to
make people self-important, chesty and arrogant. To me, the passage is of value, because it keeps
me (and other people) grounded. I want to take this opportunity to thank God for giving me
wisdom and guidance throughout my life. It is under His grace that we live, learn and flourish.

During this thesis research, I have been accompanied and supported by many people. Now the
thesis is finished, it is my great pleasure to thank them. I would like to thank dr. Slinger Jansen,
my first supervisor, for the frequent thesis reviews, for the numerous interesting discussions we
had and for remembering me that research concepts should be validated in practice in order to
be sound and really valuable. Next, I would like to express my gratitude to prof. dr. Sjaak
Brinkkemper, my second supervisor, for his critical but constructive notes and for helping me
to make my PhD plans a reality. Finally, I want to thank dr. Rik Bos for his thorough and
stimulating feedback.

Most of the research work took place at Stabiplan in Bodegraven. First and foremost, and want
to thank my supervisors at Stabiplan, Martin van der Elst and Johan Schlingmann for providing
me a pleasant environment for doing research. Johan, thanks for your enthusiastic input in (non-̃)
work related conversations and for providing me your business view on my ideas and concepts.
Gratitude also goes to Gijs Willem Sloof, Stabiplan’s CEO. I really admire his ability to exactly
pinpoint the weaknesses of imaginative concepts or abstract theories after having observed them
very shortly. Thanks for the discussions and conversations we’ve had and for realizing my future
PhD course. I also want to thank Stabiplan’s Rob, Ronald, Paul, Jos, Krijn, Henk-Jan and all
interviewees for their time and input. Finally, I want to thank Niels van Pelt for the numerous
in-depth conversations we’ve had during our lunch break walks in Bodegraven. I really enjoyed
them.

This thesis was completed thanks to the support of my loving parents, family and friends. Thanks
for preventing me from getting too serious and for the overall relaxation during this master’s thesis
research. Finally, I want to thank Sacha, my beloved. It would have been much harder without
your love, encouragement and support. Thank you.

Henk van der Schuur, August 2008

iii

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Eras of Information Technology . 1

1.1.1 Data Processing Era . 1

1.1.2 Information Technology Era . 2

1.1.3 Network Era . 2

1.2 The Rise of Services . 2

1.2.1 The Service-Oriented Enterprise . 3

1.2.2 Service-Oriented Development . 7

1.3 The Desktop Online . 9

1.4 (Continuous) Customer Configuration Updating . 10

1.5 About Stabiplan B.V. 12

1.5.1 Company Profile . 12

1.5.2 Software Products . 12

1.5.3 Software Services . 13

1.5.4 Customers . 14

1.5.5 Organization Structure . 14

1.5.6 Software Development . 15

1.6 Thesis Structure . 15

2 Research Approach 17

2.1 Research Problem . 17

2.2 Introduction to Design Research . 18

2.3 Design Research in the Context of This Thesis . 18

2.3.1 Awareness of the Problem . 18

2.3.2 Suggestion . 19

Contents v

2.3.3 Development . 19

2.3.4 Evaluation . 20

2.3.5 Conclusion . 20

2.4 Case Study . 20

2.4.1 Overview . 20

2.4.2 Research Methods . 21

2.4.3 Hypotheses . 22

2.5 Research Validation . 22

2.6 Summary . 23

3 SKU: Service Knowledge Utilization 25

3.1 Services vs. Components . 25

3.1.1 What is a Component? . 25

3.1.2 What is a Service? . 26

3.1.3 Differences and Similarities . 26

3.2 Views on the Software Life Cycle . 28

3.2.1 Component-based Software Life Cycle . 28

3.2.2 Service-based Software Life Cycle . 29

3.2.3 Differences and Similarities . 30

3.3 Service Types . 32

3.4 C-CCU and Service-based Software . 34

3.4.1 Definition . 34

3.4.2 Software Vendor Responsiveness . 35

3.5 SKU Process Model . 36

3.5.1 Concepts . 36

3.5.2 Parties . 38

3.5.3 Activities . 38

3.5.4 Relations . 39

3.6 SKU in a Software Supply Network . 40

3.7 SKU Report . 43

3.7.1 Terms and Definitions . 43

3.7.2 Structure and Contents . 44

3.7.3 Metrics and Indices . 44

3.7.4 Report Applications . 49

3.8 SKU Characterization . 51

3.8.1 Introduction . 51

3.8.2 SKU Characterization Model . 52

vi Contents

3.8.3 Identifying the Vendor’s SKU . 56

3.9 Summary . 60

4 Nuntia 63

5 Results and Conclusions 65

5.1 Validation Results . 65

5.1.1 SKU Characterization Model . 65

5.1.2 Software Prototype . 65

5.1.3 SKU Report . 66

5.1.4 Hypotheses . 67

5.2 Conclusions . 67

5.3 Answers to Research Questions . 67

5.4 Discussion . 68

5.5 Positioning of Research Contribution . 69

5.5.1 Quality of Service Metrics . 69

5.5.2 Service Management and Usage Monitoring 70

5.5.3 Aspect-Oriented Programming . 70

6 Future Research 73

6.1 Integration . 73

6.2 Scalability . 73

6.3 Reporting . 73

6.4 Development Assistance . 74

6.5 Characterization . 74

Bibliography 75

A Nuntia Database Diagram 83

B Environment Information Data Structure 85

C Nuntia Screenshots 87

D Nuntia SKU Report 91

E StabiBASE Web Integration 93

F Thesis Research Output Publications 95

Contents vii

List of Figures

1.1 Various roles within the context of SOAP . 5

1.2 An overview of all service-related concepts, techniques and parties described in this
introduction. Both software vendor organizations and service-oriented enterprises
maintain business-to-consumer and business-to-business relationships 8

1.3 Customer Configuration Updating (CCU) model [57] 11

1.4 Continuous Customer Configuration Updating (C-CCU) model [60] 11

1.5 Organization chart of Stabiplan B.V. 14

1.6 Organization chart of Stabiplan International B.V. 14

2.1 The Design Research Methodology in the context of this thesis (adapted from [103]) 19

2.2 Case study phases . 21

3.1 Customer Licenses class diagram . 27

3.2 Differences and similarities between the component-based software life cycle and
the service-based software life cycle . 31

3.3 SKU process model . 37

3.4 SKU in a software supply network (SKU-SSN) model 41

3.5 Enterprise types defined by Evgeniou [36] . 51

3.6 Comparison of the Adaptive Enterprise [36], Virtual Enterprise [94] and the Network
Orchestrator [17] . 52

3.7 SKU characterization model . 54

3.8 Characterization of Stabiplan’s SKU . 60

A.1 Database diagram of the Nuntia database, used to store logged usage and feedback
data and generate SKU reports . 83

B.1 Data structure of the environment information logged by Nuntia in case of an
exception . 86

C.1 Screenshot of Nuntia’s management web interface 87

C.2 Screenshot of Nuntia’s Service Locator . 88

C.3 Screenshot of Nuntia’s Report Generator . 89

List of Figures ix

D.1 Screenshot of a SKU report generated by Nuntia 91

E.1 Adjusted StabiBASE Web user interface, incorporating feedback submission func-
tionality . 93

x List of Figures

List of Tables

2.1 Research validation overview . 23

3.1 Services and components comparison . 28

3.2 Phases of the component-based software life cycle 29

3.3 Phases of the service-based software life cycle . 30

3.4 Service type comparison (adapted from [66]) . 33

3.5 Metrics notation . 45

5.1 Quality of Service metrics in related literature . 72

List of Tables xi

“Problems are to the mind what exercise is to the muscles. They toughen and make
strong.”

Norman Vincent Peale (American Protestant Clergyman and Writer, 1898–1993)

“If it’s not frustrating, you’re probably tackling problems that are too easy.”

Peter Clive Sarnak (Mathematician, 1953–)

“Those who think they know something really don’t know as they ought to know.”

1 Corinthians 8:2 (GNB)

Chapter 1

Introduction

Nowadays, a lot is asked from software vendors: their organizations have to be highly dynamic
and agile, and have to face new problems concerning the (among other areas) development and
management of business software. A number of trends can be observed.

First, concepts like the Service-Oriented Architecture, Software as a Service and Web service com-
position are increasingly being accepted and implemented. Secondly, a shift from offline desktop
applications towards online, (often service-based) Rich Internet Applications can be observed.
Thirdly, in order to stay competitive, software vendors need to be responsive to changes in cus-
tomer and market demands and situations more and more [60].

As will be explained in this thesis, these observations are the cause of a number of changes to the
‘traditional’ life cycle of component-based software. This introduction presents these observations
in more detail and places them in context. Furthermore, the concept of (Continuous) Customer
Configuration Updating ((C-)CCU) is introduced. Finally, the company at which this thesis was
carried out, is identified. This thesis research approach is detailed in chapter 2.

1.1 Eras of Information Technology

Concerning the history and evolution of the Information Technology, three eras, or ‘waves’, can
be identified. Nolan and Norton have developed a model that describes the growth processes and
development of the use of IT in organizations [82]. Later, Mutsaers et al. [77], expanded their
Stages Theory with three eras that all have their own characteristics in both business and IT
terms.

The first era is known as the ‘Data Processing’ (DP) era. Subsequently, the era of ‘Information
Technology’ (IT) started. Nowadays, the ‘Network’ era is recognized as the current era.

1.1.1 Data Processing Era

In the early days (the DP era dated from the 1960s until the 1980s) of information technology,
companies focussed on management strategies like Total Quality Management (TQM), and busi-
ness objectives of the companies of that time often were strongly related to cost reduction (effective
resource control), process efficiency and processing speed. The logical processes were strictly al-
gorithmic, running on workstations connected to and controlled by mainframes. Referring to the
DIKW (Data, Information, Knowledge, Wisdom) hierarchy [1; 25], this era is often characterized
by ‘Data’ — which was the main added value of the Information Technology in this era.

Introduction 1

1.2 The Rise of Services

At the end of the Data Processing era, more structured (less ‘creative’) approaches to program-
ming, testing and documentation came in use. Furthermore, more discipline was introduced with
respect to ‘change control procedures’, specifications and testing [110].

1.1.2 Information Technology Era

The IT era dated from 1980 to around 1995. This period is characterized by the introduction of
the Personal Computer (PC), accompanied by personal software (text processors, spreadsheets,
Desktop Publishing software). Companies become more process-oriented and use IT to enable
new methods of doing business. Information is spread over mainframe databases, departmental
computers and personal computers. Sophisticated tools are needed to administer the company-
wide network of distributed data, while new system development activities focus on realizing
integration with suppliers and customers [77]. Companies focus on service improvement and
management approaches like Business Process Reengineering (BPR).

Nearing the end of the IT era, IT is organized per division or business unit to decrease the de-
pendency on a central IT facility. This is mainly done in the context of risk and responsibility
spreading. IT shifts from a technological concept to a strategy-driven management resource. Com-
paring to the DIKW hierarchy mentioned before, this era is often characterized by ‘Information’.

1.1.3 Network Era

The Network era began around 1995, and still is the current era. Mutsaers et al. [77] predict a
continuous shift towards ‘open’ and public platforms such as Internet and intranet solutions. In
this process, we (will) see attempts of office automation integrated into the enterprise, e.g. office
software freely communicating with corporate applications. Obsolete systems from the IT-era
will be completely taken out of production, and the entire applications portfolio of a (software)
company will be hardware-independent. External interfacing will be completely standardized on a
global level. Networked companies are built of loosely coupled processes [46], focusing on flexibility,
customer satisfaction and collaboration with other commercial businesses in the business network.
They require high information awareness and flexibility in order to adapt to new customer needs, to
exploit new markets and to become a dynamic and transparent enterprise — especially in volatile
environments with high speed changes and opportunities appearing and disappearing quickly [36].

Software is developed at high speed, low cost and according to high quality standards. The
software vendor’s product portfolio consists of temporary products which are discarded when not
needed any more. Portfolios will not be expanded much, but will be changed rapidly because
of fast changes in business needs. Referring to the DIKW hierarchy, the Network era is often
compared to ‘Knowledge’.

1.2 The Rise of Services

During the data processing era described in section 1.1.1, practically no attention was paid to shar-
ing application logic and data across multiple machines — let alone sharing these across multiple
organizations [110]. Developing systems to automate billing, accounting and order management
was very challenging. One could imagine that basing all systems on a standardized and reusable
architecture was even more challenging, and that few companies were in the position to do so.

In the current (network) era companies have automated various operational business functions
and processes. However, the increasing demand on enterprises to be highly dynamic and agile
organizations and to respond quickly to market situations and demands, force these enterprises
to integrate their processes and collaborate with external companies [77]. Ultimately, services

2 Introduction

The Rise of Services 1.2

of external enterprises are not only utilized for the benefit of information retrieval, but also for
the processing of supportive functions (stock market syndication, payroll administration, etc.).
The company offering the service at the lowest price (or any other criteria) is automatically
selected, the job is assigned to the specific service of the external company and the initiating
service waits for response. Summarizing, enterprises are moving and transforming into Service-
Oriented Enterprises (SOEs).

1.2.1 The Service-Oriented Enterprise

The service-oriented enterprise promises to significantly improve corporate agility, speed time-to-
market for new products and services, reduce IT costs, and improve operational efficiency [79].
In line with the network era characteristics mentioned in section 1.1.3, a service-oriented enter-
prise exploits a service network. This service network entails the concept of interface ubiquity,
enabling equal base communication mechanisms to be used — within applications, as well as
between applications, as well as between external partners [52]. According to Liu and Bouguet-
taya, SOEs are virtual, adaptive, extensible, market-driven and on-demand, Web service-based
enterprises; operating in an extremely dynamic environment, outsourcing their functionalities via
(third-party) Web services [71]. As described by Newcomer and Lomow [79], several industry
trends are converging to drive fundamental IT changes around the concepts and implementation
of service orientation. Four key technologies with respect to this convergence, can be identified.

• Extensible Markup Language (XML)

• Web services

• Service-Oriented Architecture (SOA)

• Business Process Management (BPM)

All technologies are described in more detail below. At the end of this section, figure 1.2 shows how
the service-related concepts, techniques and parties described in this introduction are interrelated.

1.2.1.1 Extensible Markup Language

The Extensible Markup Language (XML) was developed by an XML Working Group (originally
known as the SGML Editorial Review Board) formed under the auspices of the World Wide Web
Consortium (W3C) in 1996. According to the definition of this consortium, XML describes a class
of data objects called XML documents and partially describes the behavior of computer programs
which process them [14]. XML is an application profile or restricted form of SGML, the Standard
Generalized Markup Language [41]. By construction, XML documents are conforming SGML
documents.

Following the description of the W3C, XML documents are made up of storage units called entities,
which contain either parsed or unparsed data. Parsed data is made up of characters, some of
which form character data, and some of which form markup. Markup encodes a description of the
document’s storage layout and logical structure. XML provides a mechanism to impose constraints
on the storage layout and logical structure. Assuming the XML Working Group has reached its
design goals [13], XML supports a wide variety of applications and is straightforwardly usable over
the Internet. Furthermore, XML is designed to be formal and concise.

Within a service-oriented enterprise, XML provides standard data types and structures, for ex-
ample for defining business documents and exchanging business information between applications
or external systems and partners. While XML is a mainstream language and forms a substantial
part of many applications and processes nowadays [21; 29], it is also subject to criticism [28].

Introduction 3

1.2 The Rise of Services

1.2.1.2 Web Services

What is a Web Service?

Many definitions of the concept ‘Web service’ exist, varying in specificity. Some define the (un-
derlying) concept of a Web service as ‘a set of self-contained, modular applications that can be
published, discovered and invoked over a network ’ [51].

According to the W3C — specifically, the Web Services Architecture Working Group within the
W3C — a ‘Web service’ is ‘a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format (specifi-
cally WSDL). Other systems interact with the Web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards.’ [11].

A more technical definition can be obtained from the Webopedia Computer Dictionary: ‘The term
Web services describes a standardized way of integrating Web-based applications using the XML,
SOAP, WSDL and UDDI open standards over an Internet protocol backbone. XML is used to tag
the data, SOAP is used to transfer the data, WSDL is used for describing the services available
and UDDI is used for listing what services are available.’ [111].

As becomes clear observing the various definitions stated above, Web services can be seen as mod-
ular software applications, orchestrated in a network, to support machine-to-machine interaction
over this network (or backbone). Web services — or more specifically, their interfaces — have
a public description and communicate with other Web services or systems by sending messages.
XML, SOAP, WSDL and UDDI are important protocols and techniques with respect to the orga-
nization of Web services. These techniques and protocols are described in more detail below —
except for XML, which is described in section 1.2.1.1.

SOAP

To allow different services to interact with each other, a communication mechanism is needed. The
specification of this mechanism involves three aspects: a common data format for the messages
being exchanged, a convention for supporting specific forms of interaction (such as messaging or
RPC) and a set of bindings for mapping messages into a transport protocol [3].

Concerning Web services, interactions are based on the Simple Object Access Protocol (SOAP).
W3C started the development of SOAP in 1999. Since then, three major versions have been
recommended by the consortium. At the time of writing, SOAP 1.2 is a recommendation [45].

By using SOAP, Web services can exchange data messages in a standardized way — service
requesters (software modules that invoke a service implemented by a service provider to accomplish
a task [79]) can invoke Web services of service providers (software modules that implement a
service according to a service contract [79]) by exchanging SOAP messages. A service invocation
is translated to an XML message (at the requester), the message is exchanged between two Web
services, and finally the XML message is turned back into an actual service invocation (at the
provider).

When a Web service receives a message from a service requester and then sends that message to
a service provider, this Web service has the role of a service broker. Note that service providers
can also be service requesters — within multi-tier architectures, for example. A service broker
by definition plays both roles. Finally, the ‘service locator’ can be identified. A service locator
is a specific kind of service provider that acts as a registry and allows for the lookup of service
provider interfaces and service locations1 (see figure 1.1). SOAP messages can be exchanged

1 Service locators are often implemented as an UDDI registry. See section ‘Universal Description, Discovery and
Integration’ (UDDI).

4 Introduction

The Rise of Services 1.2

on top of HTTP(S), SMTP or other transport protocols. In practice, SOAP is most used over
HTTP, because it allows easier communication behind proxies and firewalls than other transport
protocols2.

Service provider

Service locator
(UDDI registry)

Invocation response

Invocation request

SOAP message (XML)

Service lookup

Service contract Service publication

Service contract

Invocation response

Service broker

Invocation request

Invocation response

Invocation request

Service requester

Se
rv

ic
e

co
nt

ra
ct

Service contract

Se
rv

ic
e

co
nt

ra
ct

Invocation translation

Invocation

Figure 1.1: Various roles within the context of SOAP

Web Services Description Language

Web services have an interface describing the methods that are supported by the service, where
each method could take one message as input and return another as output (also see the previous
paragraph). To identify and interact with (the methods of a) Web service, the Web service (and
specifically, its interface) has to be described. Software interfaces are described using an Interface
Description Language (IDL). In Web services, this role is played by the Web Services Description
Language (WSDL). This language is also developed by the W3C. According to the W3C, ‘a WSDL
2.0 service description indicates how potential clients are intended to interact with the described
service. It represents an assertion that the described service fully implements and conforms to
what the WSDL 2.0 document describes. A WSDL 2.0 interface describes potential interactions
with a Web service, not required interactions. The declaration of an operation in a WSDL 2.0
interface is not an assertion that the interaction described by the operation must occur. Rather
it is an assertion that if such an interaction is (somehow) initiated, then the declared operation
describes how that interaction is intended to occur ’ [22]. At the time of writing, WSDL version
2.0 is a recommendation [22], being a major revision of the WSDL 1.2 working draft.

2 Firewalls and proxies often do not block HTTP traffic, because most Internet browsers also generate this traffic.
Blocking HTTP traffic would cause Internet browsers stop functioning.

Introduction 5

1.2 The Rise of Services

Universal Description, Discovery and Integration

In order to use Web services more pervasively and on a more global scale, a standard way for
publishing and locating services is needed. With this standardized manner, service requesters
can look for services fitting their interests by reading the services’ properties. To do so, the Web
services registry (repository) has to be standardized. A project wherein such a standardization
is developed, is the Universal Description, Discovery and Integration (UDDI) project. Currently,
this project is continued by the Organization for the Advancement of Structured Information
Standards (OASIS) consortium. According to this consortium, ‘the focus of Universal Description
Discovery and Integration (UDDI) is the definition of a set of services supporting the description
and discovery of (1) businesses, organizations, and other Web services providers, (2) the Web
services they make available, and (3) the technical interfaces which may be used to access these
services. Based on a common set of industry standards, including HTTP, XML, XML Schema,
and SOAP, UDDI provides an interoperable, foundational infrastructure for a Web services-based
software environment for both publicly available services and services only exposed internally within
an organization.’ [24]. In other words, UDDI is a specification of a framework for describing and
discovering Web services. An important part of UDDI is a business registry, which in essence is
a naming and directory service. At the time of writing, UDDI version 3.0.2 is the most recent
version — incorporating errata to the v3 specification. UDDI v3 became an OASIS standard in
February, 2005.

While the concept of a Web service entails many more aspects than these covered by XML, SOAP,
WSDL and UDDI, it is important to note that Web services represent the first jointly coordinated
and arranged effort to standardize interactions between information systems, in particular Web
services. The protocols, languages and standards discussed before are developed in parallel and
are strongly interrelated. Specific features in one of the standard specifications influence the way
other protocols, languages and standards are used.

1.2.1.3 Service-Oriented Architecture

Burbeck [19] was one of the first using the term ‘service-oriented architecture’ (SOA). The term
can be interpreted as an architectural style that guides all aspects of creating and using business
processes, packaged as services, throughout their life cycle, as well as defining and provisioning
the IT infrastructure that allows different applications to exchange data and participate in busi-
ness processes, regardless of the operating systems and programming languages underlying these
applications [79].

The main goal of SOA is transparent, flexible and dynamic interaction of services and their
clients over multiple interconnected domains, while the benefits of SOA include increased effi-
ciency through task outsourcing and component reuse, easier integration, increased flexibility and
agility at business and IT level and on-demand interconnection with business partners [76].

SOA supports the connection of various (existing) applications and data sharing — the data
extensively being encapsulated and / or described by XML. Applications are structured as a
collection of services — similar to the services types discussed in section 1.2.1.2 — which can
be used by different groups of people inside or outside the company. SOA services are loosely
coupled3, in contrast to the functions a linker binds together to form an executable, a dynamically
linked library (DLL), or an assembly.

A service-oriented architecture is supported by the Web services platform (in short, consisting of a
Web services registry, service providers and service requesters) in combination with an Enterprise
Service Bus (ESB) to connect the services and the various parties. Other characteristics of SOAs
include discovery mechanisms to register connected (available) services, and service-level Quality
of Service (QoS) management. One of the main goals of QoS is to optimize system resources

3 Services can be developed and evolved independently, while being dynamically discovered and utilized.

6 Introduction

The Rise of Services 1.2

and activate computing mechanisms, in order to satisfy the QoS requirements that are set for
applications based on a specific SOA [109].

One should notice that there is a difference between (1) an application that uses Web services
and (2) an application based on a service-oriented architecture. An existing application can
be extended with specific service-based functionality in order to meet project requirements, for
example. However, this does not automatically imply that a service-oriented architecture is used
or implemented. According to Erl [35], Web services do represent an implementation of an SOA
when used to establish a concept of encapsulating application logic within services that interact
via a common communications protocol.

As one may expect based on the developments in the various eras of Information Technology
described in section 1.1 and specifically, the characteristics of the service-oriented enterprise dis-
cussed in section 1.2.1, SOAs are adapted and implemented more and more. This expectation is
confirmed by research [53; 86].

Specifically considering software vendors in service-oriented environments, the role of such types of
companies is twofold. First, software vendors maintain business-to-consumer (B2C) relationships
with both (service-oriented) enterprises, as well as end-users. Both types of ‘consumers’ may
have licensed one or more services developed by one or more software vendors. Second, software
vendors in a service-oriented environment maintain business-to-business (B2B) relationships with
other software vendors (which may also operate in a service-oriented environment), for example
by licensing software of these vendors (illustrated by examples in section 3.4.2). As also depicted
in figure 1.2, service-oriented enterprises may maintain a B2B relationship with other SOEs, too.
Communication infrastructures may differ.

1.2.1.4 Business Process Management

Business Process Management (BPM) is defined as ‘the support of business processes using meth-
ods, techniques, and software to design, enact, control, and analyze operational processes involving
humans, organizations, applications, documents and other sources of information’ [105].

BPM and SOA, both being important concepts within a Service-Oriented Enterprise, have de-
veloped independently. However, a relationship between the two is acknowledged. As described
earlier in this introduction, SOA promotes and supports the creation and use of loosely coupled
(business) services. Woodley and Gagnon [113] find that BPM can help improve the execution of
SOA projects because BPM leverages such services, tying them together to solve and streamline
broad business challenges. As a backbone for SOA components, BPM can integrate important
functionalities to extend the value of the SOA investment. Similarly, BPM can provide a platform
for SOA service management. Process-centric tools can be used to rapidly develop, publish and
orchestrate services, and to ensure greater coherence between a SOA solution and its overarching
processes. According to Newcomer and Lomow [79], a SOA provides the ideal level of abstraction
for defining reusable business functionality, completely encapsulating underlying applications from
BPM systems.

1.2.2 Service-Oriented Development

The trends identified at the beginning of this introduction and discussed in sections 1.2 and 1.3,
challenge software vendors to adopt the paradigm of service-oriented development (SOD) based
on Web services. SOD should be seen as complementary to the well-known and well-adopted
Object-Oriented Development4 (OOD) approach. Newcomer and Lomow [79] describe four SOD
characteristics, which are listed below.

4 Also known as Object-Oriented Design.

Introduction 7

1.2 The Rise of Services

Internet

Internet

External Software Vendors
Software Vendor

Component-
based software

Service wrapper WSDL
interface

(Web)
Application

Server

Service registry
(UDDI)

B2B

B2
C

Service request

SOAP message

Service registration

End-users

Client
(Internet browser,
client application)

Service-Oriented Enterprises

Legacy
application

WSDL
interface

Enterprise Service Bus

Service
wrapper(Web)

Application
server

Service registry
(UDDI)

Licensed web
services

WSDL
interfaces

Web services WSDL
interfaces

Component-
based software

Service wrapper WSDL
interface

(Web)
Application

Server

Web services WSDL
interfaces

Figure 1.2: An overview of all service-related concepts, techniques and parties described in this introduc-
tion. Both software vendor organizations and service-oriented enterprises maintain business-to-consumer
and business-to-business relationships

8 Introduction

The Desktop Online 1.3

Reuse The ability to develop services that are reusable in multiple applications or contexts.

Efficiency The ability to quickly and easily develop new services and applications by combining
new and old services, along with the ability to focus on data sharing (instead of sharing the
underneath implementation).

Loose technology coupling The ability to model services independently of their execution en-
vironment and design messages that can be sent to any service.

Division of responsibility The ability to more easily allow business people to concentrate on
business issues, technical people to concentrate on technology issues, and for both groups to
collaborate using the service contract.

Looking at the characteristics above, one may find them quite similar to the often-referenced
benefits of (component-based) OOD [10; 55; 68; 88]. So while the names (OOD versus SOD)
and subjects (components or objects versus services) of both development types is different, the
characteristics of both development approaches are quite similar.

A concept that is closely related to SOD and the trends described in section 1.3, is ‘Software
as a Service’ (SaaS). The term is mostly associated with an online article of O’Reilly [83], later
published in [39]. Generally, SaaS is more associated with business software than with consumer
software. Consumer-oriented web-native software (including a number of the applications refer-
enced in section 1.3, for example) is generally known as — the frequently misused, misinterpreted
and bloated [5; 67] term — Web 2.0 and, to a lesser extent, as SaaS.

When a software vendor develops its software ‘as a Service’, the company develops web applications
that are hosted and operated at the software vendor (or a third party): SaaS shifts the burden of
running and maintaining hardware and software to the vendor. Furthermore, customers do not
pay for owning the software itself, but rather for using it. Software application delivery is closer
to a one-to-many model (single instance, multi-tenant architecture) than to a one-to-one model,
including corresponding architecture, pricing, partnering, and management characteristics. Often,
software features are updated in a centralized way, obviating the need for separate downloadable
patches and upgrades. Recently, Microsoft launched Microsoft Online Services5, a strategy to
publish a part of its software as an online service, therewith adopting the SaaS concept: customers
take a subscription on (service-based) software, running on their own hardware or on hardware of
the software vendor.

Under most conditions, software vendors will invest more applying a SaaS-compliant licensing
model, than when applying a perpetual licensing model — leading to higher software quality,
higher profits and higher social welfare [23].

1.3 The Desktop Online

Another observable trend that is contributing to the rise and adoption of (web) services and
service-oriented development, is the increasingly adoption and maturation of the Rich Internet
Application (RIA) — Web applications that have the features and functionality of traditional
desktop applications.

RIAs become more and more common. End-users are connected to the Internet (‘on-line’) more
frequently, and they are connected for a longer time continuously [50; 99]. As a consequence, they
are less (or even not at all) restricted to an off-line working environment. Examples of well-known
RIAs are Google Docs6, Google Maps7 and Gmail8.

5 http://www.microsoft.com/online/
6 http://docs.google.com
7 http://maps.google.com
8 http://gmail.com

Introduction 9

1.4 (Continuous) Customer Configuration Updating

With the maturation of RIAs, the boundaries between desktop and web applications begin to
blur. Examples of development that even more eliminate the differences between both type of
applications are Adobe Integrated Runtime (AIR), Google Gears and Mozilla Prism. Adobe AIR
is a platform-independent runtime environment for building RIAs9, using Flash, Flex, HTML and
Ajax, that can be deployed as a desktop application; Google Gears, a technology developed by
Google that enables offline Web applications, can be seen as an similar concept10. Mozilla Prism11

is also comparable to AIR.

An important difference between a ‘traditional’ RIA and a RIAs developed with a technology
similar to Adobe AIR is that the latter type of applications do not need a browser to run and
often can be executed in an off-line environment, too. Considering the key process areas of
product software, Rich Internet Applications have advantages compared to traditional desktop
applications. For example, the release, delivery and deployment phases of (fully or partly) online
RIAs, are shorter (or even completely absent) compared to the phases of desktop applications that
are executed offline. Similar to what is discussed in section 1.2.2, changes and updates to the code
or the interface of a RIA are propagated to the end-user immediately, i.e., the end-user does not
have to install updates or patches to be able to use the latest version of the software.

1.4 (Continuous) Customer Configuration Updating

A third observation, supported by research conclusions, is that nowadays still only few software
vendors explicitly plan releases and only very few vendors make use of usage reports. The Dutch
National Product Release Benchmark Survey 2007 [59] concludes that only 40% of the questioned
product software companies utilize a release planning with various release moments planned. Fur-
thermore, only 28% of the software vendors sell software that automatically composes usage re-
ports.

The concept of Customer Configuration Updating (CCU) was created to improve this situation, es-
pecially for software vendors developing component-based software. CCU is defined as the release,
delivery, deployment and usage and activation processes of product software [57], particularly
fitting and resembling the software life cycle processes [42]. The CCU model, as depicted in fig-
ure 1.3, displays the states a customer can move through after a product or update release (of
component-based software) on the right side [57]. On the left side, the organizational structures
that facilitate interaction are displayed.

As software products and updates are changed and released more often, effort is saved by au-
tomating steps in the CCU process — automating steps in this process enables a software vendor
to become more responsive to changes in customer and market demands [60].

One of the tools that potentially automates CCU and that was developed to serve this purpose
is Pheme [58]. Pheme is an infrastructure that enables a software vendor to communicate about
software products with end-users and enables system administrators to perform remote deploy-
ment, policy propagation, and policy adjustment. Moreover, Pheme potentially enables software
vendors to publish software knowledge in the form of licenses, software updates, software content
and software news, and it potentially enables end-users to send knowledge in the form of usage
and error feedback. While comparable tools are available, most of these tools focus on one par-
ticular aspect of the customer configuration updating process. Pheme is designed to automate all
CCU key policies, mainly focusing on component-based software products. A basic prototype of
Pheme has been developed, mainly covering the first three processes of CCU (release, delivery and
deployment).

9 http://www.adobe.com/products/air/
10 http://gears.google.com/
11 http://wiki.mozilla.org/Prism

10 Introduction

(Continuous) Customer Configuration Updating 1.4

Customer Software Vendor

Sales Informed
Customer

Uninformed
Customer

Advertise Update

Receive Info

Customer
Possesses Update

Rollback/
Deinstall

Receive Update

Deliver Update

Installed
Customer

Deploy/Install Update

Deployment
 Feedback

Activated
Customer Deactivate

Activate Update

Remove

Reconfigure

Configure

Vendor
Release

Repository

Product R1
Product R2

Product Rn

. . .

Deployment
Support

Usage
Support

Licenses

Usage Feedback

License(s)
C

ustom
er R

elationship M
anagem

ent S
ystem

SW
Development

Software
Configuration
Management

System

 A
ct

iv
at

io
n

&

U
sa

ge

D
ep

lo
ym

en
t

D
el

iv
er

y
R

el
ea

se

Figure 1.3: Customer Configuration Updating (CCU) model [57]

Figure 1.4: Continuous Customer Configuration Updating (C-CCU) model [60]

Introduction 11

1.5 About Stabiplan B.V.

As described by Jansen [56], automating steps in the CCU process ultimately contributes to
Continuous Customer Configuration Updating (C-CCU), enabling a software vendor to become
more responsive to changes in customer and market demands. Jansen [56] defines Continuous
Customer Configuration Updating (C-CCU) as follows.

Continuous Customer Configuration Updating Being able to continuously provide any stake-
holder of a software product with any release of the software, at different levels of quality.

In [60], Jansen shows that implementing C-CCU in a software vendor’s organization reduces
overhead from the development, release, delivery, deployment, activation and usage processes,
enabling a software vendor’s organization to become more responsive to change (see figure 1.4).
Similar conclusions can be found in [9]. However, as with CCU, research mainly focused on
applying and implementing the concept with respect to component-based software.

1.5 About Stabiplan B.V.

This section describes the software vendor, Stabiplan B.V., at which this thesis was carried out.
First, a company profile is provided. Next, the vendor is identified in terms of the software
products and services it develops. Finally, the vendor’s customers, organization structure and
software development processes are identified.

1.5.1 Company Profile

Stabiplan [98] develops and distributes CAD software products for the building services industry,
creating designs in the ‘.dwg’ file format. Stabiplans market leading product, StabiCAD, is now
used by more than 7000 draftsmen every day in the Netherlands and Belgium.

Founded in 1990, Stabiplan has set the basis for CAD software for contractors in the Netherlands
and Belgium. StabiCAD is used daily by most companies in the Dutch speaking building services
industry. With over 3800 customers and more than 8000 licenses sold, Stabiplan is market leader
in its segment.

Stabiplan approximately employs 100 employees. The software development activities are mainly
performed in the Netherlands. Since 2006, a separate software development team is located in
Romania. In that year, Stabiplan Belgium was launched, too. Stabiplan is one of the largest
AutoCAD dealers in the Netherlands and a long-standing partner of Autodesk [6], the vendor of
AutoCAD.

Recently, Stabiplan made its StabiCAD product line available abroad as well. Since August, 2008,
the first localized editions were released for Belgium, France and the United Kingdom. In the
future, other localizations may be developed and released.

Stabiplan is the vendor of a number of software products and services. In the next sections, these
products and services are described.

1.5.2 Software Products

1.5.2.1 StabiCAD V, LT

Before the release of StabiCAD 8, StabiCAD V was Stabiplan’s flagship software product. With
the software, draftsmen are able to draw sewers, air tubes, pipelines and cable routes. Furthermore,
complex surface, volume and resource calculations can be performed. The package includes symbol

12 Introduction

About Stabiplan B.V. 1.5

libraries to depict all kinds of radiators, pumps, valves, ducts and other technical or mechanical
products, including corresponding parameters and technical information.

StabiCAD V can be run with Autodesk AutoCAD [6] or IntelliCAD [54] and has a modular design,
which allows customers to set up their own module configuration. Each module is related to a
specific market branch. Examples of modules are ‘Ventilation and Air conditioning’, ‘Electrical
Installation Engineering’, ‘Gas Pipe Calculation’ and ‘Fire Safety’.

While StabiCAD V provides full functionality for full-time draftsmen, StabiCAD LT, the ‘light’
edition of StabiCAD, is positioned as a cost-efficient solution for the infrequent CAD draftsman.
Compared to StabiCAD V, StabiCAD LT lacks calculation- and 3D viewing capabilities. Both
StabiCAD V and StabiCAD LT are component-based, off-line software and run with most recent
versions of Microsoft Windows.

1.5.2.2 StabiCAD 8

After having developed StabiCAD V for around five years, on the 8th of August 2008, Stabiplan
released the next version of StabiCAD: StabiCAD 8. Compared to StabiCAD V and LT, the
improvements of this new version are mainly in the area of the user interface consistency, as well
as in the areas of drawing and calculation intelligence and database uniformity. With StabiCAD
8, the ‘light’ and ‘full’ editions of the StabiCAD software are integrated in one software package,
available in two editions: ‘StabiCAD 8 LT’ and ‘StabiCAD 8 PRO’. Similar to StabiCAD V,
StabiCAD 8 runs with both AutoCAD and IntelliCAD kernels.

1.5.2.3 StabiBASE

StabiBASE can be seen as the StabiCAD control centre. This software module is a solution
for document, database and project administration management, project settings configuration
and symbols overview generation. StabiBASE organizes the drawings and other documents of a
draftsmen by project, object or engineering application. Draftsmen often utilize this software as
the starting point for their drawing activities.

1.5.3 Software Services

1.5.3.1 StabiBASE Web

Recognizing the shift from mostly component-based desktop applications towards service-based
online applications described earlier, Stabiplan realized that an online, service-based alternative
of its StabiCAD control centre should be developed. Enabling draftsmen and project leaders to
access, preview and download their drawings and project documents online via a web browser,
StabiBASE Web is the first of a new generation of service-based applications at Stabiplan.

1.5.3.2 CADsymbols.nl

Manufacturers of certified branch materials for engineering (boilers, pumps, pipelines, etc.) pro-
vided information and drawings of their products to Stabiplan for incorporation within various
StabiCAD modules. However, new versions of Stabiplan software and new versions of symbols are
not always released synchronously. To enable draftsmen to use new or updated drawing symbols
in their drawings, Stabiplan launched CADsymbols.nl. At this website, a large collection of CAD
symbols is presented. Manufacturers can register as a symbol supplier, draftsmen may download
CAD symbols free of charge and incorporate these in their drawings.

Introduction 13

1.5 About Stabiplan B.V.

1.5.4 Customers

Until now, Stabiplan roughly sold 8000 licenses to more than 3800 customers. At time of writing,
the company’s customer base mainly consists of Dutch and Belgian companies operating in the
building services and management sector. Whereas StabiCAD V only was released in a Dutch
version, StabiCAD 8 is released in Dutch, English, French and Romanian localizations. The
somewhat larger customers of Stabiplan include Wolter & Dros, Stork N.V. and Imtech N.V. The
software vendor distinguishes two types of users for its software. Draftsmen spending more than 20
hours a week are advised to use StabiCAD 8 PRO, otherwise they are advised to license StabiCAD
8 LT.

1.5.5 Organization Structure

Currently, Stabiplan approximately employs 100 people, divided over the Netherlands, Belgium
and Romania. Most employees (80 people) are located in Stabiplan’s head office in Bodegraven,
the Netherlands. Apart from the head office, a separate team of around 15 people is located in
Romania. Furthermore, Stabiplan Belgium consists of 3 people. Because of its international ac-
tivities, the Stabiplan holding now exists of four companies: Stabiplan B.V. (figure 1.5), Stabiplan
Romania, Stabiplan Belgium and Stabiplan International B.V. (figure 1.6).

Management

Marketing & Public
Relations

Facility Services

(Management)
Secretary

(License)
Administration

Sales Software Development
& Research Support & Help desk

Figure 1.5: Organization chart of Stabiplan B.V.

Management

Sales Support Product Management

Figure 1.6: Organization chart of Stabiplan International B.V.

14 Introduction

Thesis Structure 1.6

1.5.6 Software Development

This section describes the situation at Stabiplan based on facts that were gathered during this
thesis research, making use of the research methods presented in chapter 2.

1.5.6.1 StabiCAD V, LT

Since practically all company resources were dedicated to the development and release of StabiCAD
8, there was almost no StabiCAD V- and LT-related development. Only small maintenance
updates for StabiCAD V and LT were released.

1.5.6.2 StabiCAD 8, StabiBASE (Web)

Stabiplan’s development department is split into a number of teams. Each team has a project
leader and is responsible for its corresponding modules and calculations. Towards the release of
StabiCAD 8, numerous pre-releases have been defined, each release representing a major milestone,
related to a set of new features and functionality. Project leaders met very frequently with their
team to discuss and review the progress of their work. With respect to the communication with
the separate development team in Romania, Skype conversations and conferences are initiated on
a regular basis.

Functional requirements elicitation and prioritization concerning the development of the software
package are performed by a product management team, consisting of the CEO, national and
international project managers, as well as a number of project leaders.

Another group of people was responsible for testing all new calculations, modules, interface el-
ements and other functionality introduced in StabiCAD 8. Other people were dedicated to the
localization, graphical aspects, installation procedure and compatibility of the software package.
Major results and milestones concerning the development of both StabiCAD and StabiBASE were
presented during development meetings, possibly combined with a Skype session.

1.5.6.3 CADsymbols.nl

Concerning the development of CADsymbols.nl, hardly any development was done. Again, mainly
because of the focus on the release of StabiCAD 8, practically no effort was put into the develop-
ment of this website. That is, no new features were added, although the provision and registration
of new symbols and engineering materials information to the website continued uninterruptedly.

1.6 Thesis Structure

In the next chapter, this thesis research approach is detailed. Chapters 3 and 4 present the
research outputs of this thesis. Chapter 4 specifically introduces the developed software prototype
(Nuntia) and specifies it on functional and technical level. Chapter 4 also includes the validation
of the prototype with respect to its performance. Chapter 5 presents the results, conclusions
and discussion of this thesis research. This chapter also positions the contribution of this thesis
research in the context of related research and other work. Finally, in chapter 6, future research
is discussed.

Introduction 15

Chapter 2

Research Approach

This chapter details this thesis research approach. First, the research problem and research ques-
tions are defined. Secondly, research steps and outputs are specified. Thirdly, the case study
that is carried out as part of the research is explicated. Finally, the research validation process is
detailed.

2.1 Research Problem

In the introduction of this thesis, four trends concerning software vendors and software develop-
ment were observed.

• Nowadays, software vendors need to be very agile organizations, responsive to changes in cus-
tomer and market demands, while developing software at high speed, low cost and according
to high quality standards.

• Concepts like the Service-Oriented Architecture, Software as a Service and Web service com-
position are rising and increasingly accepted and implemented, ultimately within a Service-
Oriented Enterprise.

• Software vendors shift from the Object-Oriented Development paradigm to the Service-
Oriented Development paradigm, focusing on the development of Web services and online,
Rich Internet Applications instead of offline, component-based desktop applications.

• Still, only few software vendors explicitly plan releases or make use of usage reports nowadays,
and many product software vendors deliver their product software on a ‘manual pull’ basis.

Furthermore, apart from the results already discussed in section 1.4, the Dutch National Product
Release Benchmark Survey 2007 [59] presents another set of interesting findings.

• Almost two third of the participating software vendors indicate that their customers report
bugs via telephone or e-mail; 6% of the companies indicate that bugs are registered and
collected via automatically composed bug reports.

• 30% of the software vendor’s software automatically composes and sends bug reports.

• 95% of the software vendors indicate using licenses, while 18% indicates that licenses are
automatically generated from sales contracts.

• 52% of the participants facilitates customer-specific adjustments or features to their software.

Research Approach 17

2.3 Introduction to Design Research

Given the trends and findings above, a solution that enables to apply C-CCU specifically to
service-based software (and therewith specifically enabling a software vendor developing service-
based software to become more responsive to change), is needed. In this thesis, a solution that
fulfills this need is presented. As is explicated and motivated in chapter 3, the concept of C-CCU
as defined by Jansen [56], is only partly applicable to service-based software.

Main Research Question

RQ How can Continuous Customer Configuration Updating be applied to service-based software
and Web services?

Sub Questions

SQ1 What are differences and similarities between software components and services with respect
to C-CCU?

SQ2 What are measurable critical success factors of C-CCU applied to service-based software and
Web services?

SQ3 When is C-CCU, applied to service-based software and Web services, implemented success-
fully?

The solution presented is threefold: it consists of (1) a comparison of the life cycles of component-
based and service-based software to analyze to which extent C-CCU can be applied to service-based
software; (2) a concept that describes this application; (3) a software prototype that provides a
concrete implementation of this concept.

2.2 Introduction to Design Research

The research that has been done in the context of this thesis can be characterized as design research.
Design research is an information technology research methodology which offers guidelines for
evaluation and iteration within research projects [48]. The methodology is an outcome-based
information technology research methodology, which offers specific guidelines for evaluation and
iteration within research projects [103]. Within this methodology, the focus is on the development
and performance of (designed) artifacts with the explicit intention of improving the functional
performance of the artifact.

Design research is characterized by five process steps, where each process step is related to a
specific output type. Furthermore, the methodology defines various knowledge flows that ‘flow’
from specific process steps to process steps preceding these steps. In the next section, this thesis
research is described in terms of the design research methodology. See figure 2.1.

2.3 Design Research in the Context of This Thesis

As visualized by figure 2.1, the design research methodology defines five process steps. In this
section, each process step will be linked to one or more parts of this thesis.

2.3.1 Awareness of the Problem

The first process step is titled ‘Awareness of the Problem’. In the introduction of this thesis
(chapter 1), the problem description of this thesis research is described, and summarized by a

18 Research Approach

Design Research in the Context of This Thesis 2.3

Proposal

Tentative design

Artifact

Awareness of Problem

Suggestion

Development

Knowledge Flows Process Steps Outputs Thesis

Thesis introduction

Service Knowledge
Utilization

SKU models, Software
prototype, SKU report

Performance measures

Results

Evaluation

Conclusion

Case study

Thesis conclusion

Operation and
Goal Knowledge

Circumscription

Chapter

1

3

3, 4

3, 4

5

Figure 2.1: The Design Research Methodology in the context of this thesis (adapted from [103])

main research question. The problem consists of three elements. The first element is the shift
from component-based software to service-based software software vendors are making. The second
element is formed by the application of Jansen’s C-CCU model (and its advantages) to service-
based software. Finally, the third element of the problem is the status of automatic performance,
usage and feedback logging, monitoring and reporting at software vendors in general.

2.3.2 Suggestion

A solution to the problem defined in section 2.3.1 is suggested by this thesis research in the form
of a concept called ‘service knowledge utilization’ (SKU). The SKU concept, which can be seen
as ‘tentative design’ output in the design research methodology, is designed to address each of
the elements the problem consists of. In chapter 3, the concept of service knowledge utilization is
presented.

2.3.3 Development

Part of the SKU concept is a set of artifacts. Each artifact is tightly related to the concept
of SKU and is developed within this thesis research. Furthermore, as visualized by figure 2.1,
each artifact is an output of the ‘Development’ process step of the design research methodology.
Three SKU models, a software prototype and the SKU report are included in this set of artifacts.
The software prototype is called Nuntia and is the main artifact of the design research performed.
Nuntia is presented in chapter 4. The SKU models and the SKU report are described in chapter 3.

Research Approach 19

2.4 Case Study

2.3.4 Evaluation

With respect to this thesis research, the ‘Evaluation’ process step of the design research method-
ology concerns the validation of the outputs of the ‘Development’ process step. This validation
occurs in order to investigate to which extent the developed artifacts (as part of the suggested
solution to the problem perceived) contribute to the solution proposed, and (therewith) to obtain
a more profound insight in and understanding of the problem.

The evaluation of the artifacts is done by means of a case study, which is described in section 2.4 of
this chapter. The performance measures that are mentioned as outputs by figure 2.1 are presented
in chapter 4.

2.3.5 Conclusion

‘Conclusion’ is the last process step of the design research methodology. Having evaluated the
research outputs, the last process step entails the formulation of research conclusions. As a conse-
quence, final results and conclusions form the outputs of this process step. Again, as depicted in
figure 2.1, both the results and conclusions contribute to the awareness of the problem. Specifically,
more knowledge concerning the research operation techniques and research goal are gathered dur-
ing the ‘Conclusion’ process step. The results and conclusions of this thesis research are presented
in chapter 5.

2.4 Case Study

This section describes the case study research approach. First, an overview of the various case
study phases is presented. Next, case study techniques that were used to describe the case study
company (Stabiplan B.V.) and gather facts on which the results of the case study are based, are
detailed and research hypotheses are presented.

2.4.1 Overview

As mentioned, the goal of this case study is to evaluate the software prototype and a number
of SKU concepts (the concepts, or artifacts are listed in figure 2.1). An overview of the various
phases of this case study with respect to the software prototype is depicted in figure 2.2. Similar
phases apply to other artifacts.

First, the current situation at the software vendor in the context of SKU was identified (see
section 3.8.3). Next, the software prototype was developed and implemented at Stabiplan. Sec-
tion ?? presents details of this phase. The last phase of the case study is related to the validation
of the software prototype and SKU concepts. Different research methods are utilized to validate
these research outputs. Which research methods are used to validate which research outputs is
detailed in section 2.5; validation results are presented in section 5.1. The research questions of
this research defined in the introduction of this thesis (section 2.1) are partly answered based on
results of the case study.

The next section described the research methods that were utilized in the identification phase of the
case study. Section 2.4.3 lists three hypotheses which illustrate potential effects of a successfully
operating SKU implementation. The validation process of this thesis research is described in
section 2.5.

20 Research Approach

Case Study 2.4

Current situation identification

Software prototype implementation

Software prototype validation

Figure 2.2: Case study phases

2.4.2 Research Methods

In order to gather facts on which the results of the case study are based, various case study research
methods have been used. Yin [116] has defined six sources of case study evidence: documentation,
archival records, interviews, direct observations, participant-observation and physical artifacts.
Four sources are utilized within the context of this thesis research.

Direct Observations Various ‘direct observations’ were made during the presence at Stabiplan.
First, a company introduction tour was done, giving an impression of the structure and
departments of the company. Furthermore, this tour aided with indicating the key people
within the organization because during this introduction, a number of short introductory
conversations were held. Second, a number of development meetings were attended. During
these meetings, software developers and project leaders presented the progress of their work
or projects and presentations about new project management methods and programming
language features were given. Because of the substantial amount of ‘around the coffee ma-
chine’ chatter during these meetings, the meetings helped in getting a realistic view of the
company, its culture and its employees. Employees were very engaged and motivated to
deliver on-time, in order to meet the release date of StabiCAD 8.

Documentation Stabiplan provided documents such as software architecture specifications, soft-
ware manuals, process descriptions, meeting agendas and various memos. During the case
study, these documents have been studied, partly as part of the preparation on the case
study interviews (see below).

Software A training session was attended in order to get familiar with the Stabiplan software, its
end-users and Stabiplan’s training sessions. Furthermore, during the presence at Stabiplan,
the software being developed — mainly StabiBASE Web — was observed on both code and
usage level. Being positioned near the main Skype PC of the development department of
Stabiplan, many programming problems, reviews and solutions were observed1.

Interviews Yin [116] defines three types of interviews: open-ended interviews, focused interviews
and (semi-) structured or survey. In the context of the case study of this thesis, twenty semi-
structured interviews have been conducted. Moreover, a survey has been designed specifically
for each of the departments within the organization of Stabiplan employing people that were
invited to the case study interview. This survey was sent to the interviewees, and had

1 As indicated in section 1.5.6, Skype was used to communicate with the development team in Romania.

Research Approach 21

2.5 Research Validation

to be returned filled-in, before the start of the interview. The filled-in surveys were also
studied before the start of the interviews and frequently led to new interview questions.
During the interviews, which were always one-on-one, the surveys served as a guide to make
sure that all relevant aspects of the situation at the company with respect to SKU would be
addressed. Mostly, interviewees were asked to elaborate on their survey answers and describe
the ‘current’ situation at their department. Eventually, interviewees were asked to share their
understanding or opinion concerning a possible future situation and the consequences of such
a situation.

2.4.3 Hypotheses

The SKU characterization model presented in chapter 3 defines four types of software vendors
in terms of SKU level, flexibility and responsiveness. After having implemented the software
prototype successfully (second phase of the case study, see figure 2.2), it is expected that three
potential effects of this implementation can be observed.

Decrease of Time To Market (TTM) It is expected that, utilizing a complete SKU imple-
mentation, the software vendor’s time to market will be shortened. Three causes can be
identified. First, the internal communication of the software vendor will be improved be-
cause the SKU report provides an informed view on the performance, usability and usage
of the software, easing feature-related decision making and consequently shortening the re-
lated management meetings. Secondly, frequent analysis of the the SKU reports potentially
discloses end-user’s configuration and severe bugs earlier and may help to reproduce bugs,
possibly resulting in shorter overall development cycles. Thirdly, by effectively utilizing
the software (usage) knowledge gathered, changes in customer and market demands poten-
tially are expected and incorporated in the vendor’s projects at an earlier stage, in a shorter
amount of time. As motivated in chapter 3, a short time to market contributes to an increase
of the vendor’s flexibility.

Responsiveness Increase The software vendor’s responsiveness, for example to issues reported
to its help desk, may increase when the vendor has implemented the SKU prototype. With
the SKU presented, the usage of software is logged continuously. Furthermore, actions could
be defined that have to be executed when specific events occur and are logged. For example,
an action could describe that as soon as a severe exception occurs, the help desk of the
software vendor has to be informed.

SKU Level Increase By implementing the software prototype (which provides a service knowl-
edge utilization implementation for software vendors developing service-based software), it
is expected that Stabiplan’s SKU level will increase. As detailed in section 3.8.3, Stabiplan
currently has no objective data on the usage and feedback on its software. When Stabiplan
succeeds in effectively involving the service knowledge the prototype provides in its decisions
(concerning the development of a new service feature, for example), it is expected that the
vendor’s SKU level will increase.

In chapter 5, research conclusions are presented. Part of the conclusions is an overview of which
hypotheses could be confirmed, and which hypotheses have to be rejected.

2.5 Research Validation

The case study evidence, research outputs and the hypotheses have to be validated in order to be
reliable and useful. This validation is accomplished in several ways.

22 Research Approach

Summary 2.6

Interviews In order to determine the correctness of the information interviewees provided and
the information gathered during direct observations, various reflective questions were asked
during the interviews, especially during the interviews with key people of a department or
the total organization. Furthermore, a number of project leaders, lead developers and help
desk employees were asked to give their opinion about the final prototype and its fit within
the organization.

Expert Validation Before implementing the prototype, both the metrics and formulas used to
calculate the service indices of the SKU report (generated by the software prototype) were
reviewed and validated by the product managers of Stabiplan. Furthermore, Stabiplan’s
head developers and CEO were asked to review the SKU report generated by the prototype.
Specifically, they were asked to validate and judge the value, relevance and usefulness of the
information contained in the report, with respect to the factors that determine the SKU
level and the flexibility of a software vendor (as described in section 3.8.2), the goal of the
report (improve the software vendor’s service knowledge utilization and responsiveness), as
well as the hypotheses listed before. All experts received a set of statements related to the
research outputs, which they were asked to confirm or reject using a Likert scale (1: strongly
disagree, 5: strongly agree).

Testing A number of Stabiplan’s head developers and testers, as well as Stabiplan’s CEO were
asked to test the software prototype developed during the case study. This was done to
validate and test the software in practice, inter alia in terms of stability and performance.

Table 2.1 details which party or research method is used to validate which (part of) research design
output. As mentioned, results of the validation process at Stabiplan are presented in section 5.1.

Research Output
Research Method

Interviews Expert Validation Testing

SKU Characterization Model
√ √

SKU Report
√

Software Prototype
√ √

Hypotheses
√ √

Table 2.1: Research validation overview

2.6 Summary

Based on the research triggers described in this thesis introduction, the main research question
that is answered by this thesis research is ‘How can Continuous Customer Configuration Updating
be applied to service-based software and Web services?’. The research that has been done in the
context of this thesis can be characterized as design research. Design research is characterized by
five process steps, where each process step is related to a specific output type. The first output step
of the design research methodology is titled ‘Awareness of the Problem’. The research problem

Research Approach 23

2.6 Summary

of this thesis consists of three elements: the shift from component-based software to service-
based software software vendors are making, the application of Jansen’s C-CCU model (and its
advantages) to service-based software and the status of automatic performance, usage and feedback
logging, monitoring and reporting at software vendors in general. A solution is suggested in the
form of a concept called ‘service knowledge utilization’ (SKU). The SKU concept can be seen as
‘tentative design’ output.

Direct observations, documentation, software, and interviews are used in order to gather facts on
which the results of the performed case study are based. After having implemented the SKU
concept, it is expected that a vendor’s TTM will decrease and that both a software vendor’s
responsiveness as its SKU level will increase. Research outputs and hypotheses are validated by
means of interviews, expert validation and testing.

24 Research Approach

Chapter 3

SKU: Service Knowledge
Utilization

Before the application of Continuous Customer Configuration Updating to service-based software
is studied, the underlying concepts of this application are defined and discussed. First, differences
and similarities between components and services are discussed. Secondly, life cycles of on the
one hand software based on components, and on the other hand software based on services are
studied. After having analyzed the groundwork, the concept of service knowledge utilization is
presented. The models that were identified as design research artifacts in chapter 2 and are part
of the SKU concept, are described. The SKU process model, SKU in a software supply network
(SKU-SSN) model and SKU characterization model, as well as the SKU report are detailed in
this chapter. Finally, Stabiplan’s situation is identified in terms of service knowledge utilization.

3.1 Services vs. Components

3.1.1 What is a Component?

The term ‘component’ is used to characterize many different concepts. This is reflected in the
definition of the term in the online dictionary Dictionary.com [26]: it defines a component (among
others) as (1) a constituent part; element; ingredient ; (2) a part of a mechanical or electrical
system: hi-fi components; and (3) being or serving as an element (in something larger); composing;
constituent: the component parts of a computer system.

In the context of this thesis research, the term ‘component’ is understood to be a software com-
ponent. According to Wikipedia, ‘a software component is a system element offering a predefined
service and able to communicate with other components’ [27]. More specifically, Szyperski defines
a component as ‘a binary unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and is subject to
composition by third parties’ [100]. Allen [2] describes a component as ‘an executable unit of code
that provides physical black-box encapsulation of related services. Its service can only be accessed
through a consistent, published interface that includes an interaction standard. A component must
be capable of being connected to other components (through a communications interface) to a larger
group’ — indicating the similarities between a software component and a software service, as is
discussed in section 3.1.3.

Components are self-contained — can be deployed and versioned independently. Within object-
oriented programming, software components often take the form of objects or collections of ob-

SKU: Service Knowledge Utilization 25

3.1 Services vs. Components

jects [100], defined by a method signature. Objects that form parts of component ‘instances’ are
almost never deployed — a software component is what is actually deployed. Other characteristics
of high quality software components include reusability and composability. Composite software
that is composed of software components is called component(-based) software.

3.1.2 What is a Service?

Similar to the term ‘component’, the notion of a service can be applied to many different concepts
in the daily life. Many organizations provide services to customers, clients, employees or business
partners. A post office, for example, provides various services to business clients and citizens.
Typical, basic services include post delivery-, direct mail- and insurance services. These services
are divided over a number of counters, some counters possibly providing the same service to ensure
high service availability. To the customer, it does not matter what exactly happens behind the
counter to fulfill the specific service — as long as it is fulfilled. Processing and completing a
complex transaction may require the customer to visit a number of counters, in fact following a
business process flow. This is regularly the case with municipality services (passport acquirement,
etc.). According to Bennet et al. [72], the following definition of a service is widely accepted.

Service An act or performance offered by one party to another. Although the process may be
tied to a physical product, the performance is essentially intangible and does not normally
result in ownership of any of the factors of production.

However, in the context of this thesis research, the term ‘service’ is understood to be a software
service. According to Eindrei et al., a software service is generally implemented as ‘a coarse-
grained, discoverable software entity that exists as a single instance and interacts with applications
and other services through a loosely coupled, message-based communication model ’ [34].

As already stated in the introduction of this thesis, software services are loosely-coupled (services
can be developed and evolved independently, while being dynamically discovered and utilized)
and support interoperability. Software services have a clear functional meaning, often related to
business goals. Composite software that is composed of software services is called service-based
software.

3.1.3 Differences and Similarities

While services and components may appear similar at first sight, services and components are
not the same, and they do not represent the same concept. Neither is a service equal to an
object in programming language terms. Instead, a service is close to the concept of a business
transaction (as may be clear from the ‘daily life’ example discussed earlier). A service consists
of a collection of components that work together in order to deliver the business function that
the service represents. Furthermore, a service normally accepts more data in a single invocation
and consumes more computing resources than a component1 [79]. Therefore, in comparison,
components are finer-grained than services. However, services vary in granularity, depending on
their type and goal (an overview of service types is presented in figure 3.4). In addition, while
a service maps to a business function, a component typically maps to business entities and the
business rules that operate on them [34]. The following example clarifies the differences between
and similarities of both concepts. See figure 3.1.

The Customer Licenses class diagram visualizes three classes (‘components’) that provide methods
to obtain information concerning the customer’s licenses and applications, including its total license

1 A service consumes more computing resources than a component because of the need to map to an execution
environment, process the XML, and often access it remotely [79].

26 SKU: Service Knowledge Utilization

Services vs. Components 3.1

getID()
getName()
getLicenses()
addLicence()
removeLicense()
getApplications()
getTotalLicenseCosts()

ID
Name

Customer

getID()
getCustomerID()
getSoftwareApplicationID()
getLicenseDuration()

ID
CustomerID
ApplicationID
StartDate
EndDate

License

11..*

getID()
getName()
getVersion()
getPrice()

ID
Name
Version
Price

SoftwareApplication

licenses

1

1..*

Figure 3.1: Customer Licenses class diagram

costs. The SoftwareApplication component provides methods to identify the software application
that is licensed by a particular license owned by the customer. The License component provides
methods to identify both the customer owning the license and the software application that is
licensed, as well as a method to determine the period of time the license is valid. The components
are created to closely match business entities and encapsulate the behavior that matches the
entities’ expected behavior [34].

In service-oriented software design, services are not designed to match business entities — a service
manages operations across a set of business entities. Referring to the Customer License example
again, a Customer service will respond to any request from any other system or service that needs
to access customer information. The customer service ‘owns’ all the data related to the customers
it is managing. Furthermore, the service is capable of making other service inquiries on behalf
of the calling party. This means a service is a manager object that creates and manages its set
of components [34]. Services are designed to solve interoperability issues between applications,
or to use within the process of new application composition. Table 3.1 provides a services and
components comparison summary.

Research has been done to unify the component and service concepts and characteristics. Yang and
Papazoglou [115] propose the concept of a service component to raise the Web services abstraction
level by facilitating Web service reuse, extension, specialization and inheritance. The service
component consists of a single, public interface, which describes via what types of messages and
ports it is able to communicate. A service component’s composition logic specifies how the service
is constructed out of Web services by implementing two constructs: the composition type, which
specifies how the constituent services are executed, and the message dependency, which specifies
the message dependency relation between the service component and its constituent services.

SKU: Service Knowledge Utilization 27

3.2 Views on the Software Life Cycle

Criterion Components Services
Abstraction Business entity, including business

rules
Business function
(set of business entities)

Goal Solve interoperability issues; Use
within new application composition

Create detailed business logic for
applications

Invocation Restricted amount of data accepted;
low use of computing resources

More data accepted; high use of
computing resources

Granularity Fine-grained Relatively coarse-grained, variable

Definition Method signature Message signature (WSDL)

Table 3.1: Services and components comparison

The service components of Yang and Papazoglou should not be confused with the service com-
ponents described in the Service Component Architecture (SCA). SCA is based on the idea that
a business function is provided as a series of services, which are assembled to create solutions
that serve a particular business need. Service Component Architecture provides a model both for
the composition of services and for the creation of service components, specifically for building
applications and solutions based on a SOA [95]. In SCA, the unit of construction is the compo-
nent, consisting of a configured instance of a piece of program code providing business functions.
The business function is offered for use by other components as services. SCA describes the
content and linkage of an application in assemblies called composites. Composites can contain
components, services and references, including the descriptions of the connections between these
concepts. The core of the architecture is the Assembly model, which describes applications and
solutions in terms of components and composites, which group, organize and connect components
into larger assemblies [63].

While effort is made to unify the concepts of a component and a service, and to merge the
characteristics of both concepts, one should not neglect the differences between the notion of a
component and a service. The efforts towards an unification of both concepts can be seen as an
acknowledgement of the contrast between the concepts.

3.2 Views on the Software Life Cycle

Before discussing software life cycles, it is important to note that the term ‘software life cycle’
is not equivalent to, and should not be confused with ‘Systems (or Software) Development Life
Cycle’ (SDLC). While both concepts are frequently used interchangeably, in this thesis, we use
the term ‘software life cycle’ to refer to the complete software life cycle — including the ‘life’ of
software outside the organization of a software vendor. The concept of SDLC mainly focuses on
the (development phase in the) life cycle of software at a software vendor [30].

First, this section describes the life cycle of component-based software. Next, the life cycle of
service-based software is presented.

3.2.1 Component-based Software Life Cycle

The International Organization for Standardization (ISO) published a standard for software life
cycle processes, defining all tasks required for developing and maintaining software [42; 61]. Fur-
thermore, a number of software life cycle models have been developed [20; 31]. The view on the

28 SKU: Service Knowledge Utilization

Views on the Software Life Cycle 3.2

component-based software life cycle described in this thesis is based on the CCU and C-CCU
models of Jansen [56] and is similar to the staged model of Rajlich and Bennet [89]. Based on this
literature, the component-based software life cycle consists of six phases: development, release,
delivery, deployment, activation and usage. These phases of the component-based software life
cycle are discussed and explained below; see table 3.2.

Development The software vendor develops its software (main software product, software
updates, major and minor patches, etc.), including tools and manuals. This
includes the composition of different components in order to create compos-
ite software.

Release In the release phase, the software vendor announces and releases a new
version of its main software product, an update, or a patch.

Delivery Concerns the delivery of software, licenses, manuals and knowledge to
customers.

Deployment Software is deployed (installed and configured), removed (roll-back) or up-
dated at the end-users’ systems. In large enterprises for example, the de-
ployment of software updates may affect thousands of computers and involve
terabytes of data.

Activation In the activation phase, software is activated with a license (software code,
hardware dongle, etc.). The ‘retirement’ or deactivation of software — that
for example, takes place when the company using the software decides the
software has to be replaced by other software — also happens within this
phase.

Usage Concerns the usage logging, error reporting and feedback management of
the deployed and activated software.

Table 3.2: Phases of the component-based software life cycle

As concluded by Rajlich and Bennet [89], each phase has very different technical solutions, pro-
cesses, staff needs, and management activities. Being well applicable to component-based software,
the fit between the component-based software life cycle described above and service-based software
is being questioned [56]. In the next section, a service-based software life cycle is presented. Next,
differences and similarities between both life cycles are discussed.

3.2.2 Service-based Software Life Cycle

In literature, the phases that are part of the (web) service life cycle are often presented in a layered
fashion. Papazoglou and Georgakopoulos [85] define three layers (or service types) within the
service-oriented architecture: basic services, composite services and managed services. The first
layer, basic services, deals with service discovery, selection, binding, composition and publication.
The second layer, composite services, concerns coordination, conformance, monitoring and Quality
of Service. The upper layer, managed services, is concerned with certification, Service Level
Agreements (SLA), and assurance and support processes. As also observed by Milanovic [76], only
the basic services layer is well-defined and standardized. Within the Web services architecture,
the composition, selection, binding and publication of services are realized by WSDL, SOAP and
UDDI (see section 1.2.1).

In this thesis, the definition of (positioning of, and processes within) the management phase of the
service-based software life cycle is based on other literature, overlapping both the composite and

SKU: Service Knowledge Utilization 29

3.2 Views on the Software Life Cycle

managed services layers mentioned before. With respect to the service management framework
presented in [52], ‘service management’ entails the creation, updating, deployment, executing and
monitoring of services. According to [87], service management includes visibility and control
capabilities, as well as interactive monitoring, alerting services, administration, and reporting.

When a service is online for a specific period, the service is managed (redeployed or reconfigured,
for example). In most cases2, services, end-users or other ‘clients’ are able to utilize the service —
in its new deployment state and configuration settings — again when the process of managing the
service has been completed. At that point in time, the processes of usage monitoring and usage
feedback (re)initiate, because of the new deployment state or configuration settings. The usage
phase is the last phase in the life cycle of service-based software. See table 3.3.

Development The development phase concerns the development of a service by a software
vendor.

Discovery In the discovery phase, services are published and discovered — often by
utilizing a service repository (UDDI or other service registry).

Selection Based on characteristics of the service that is requested, as well as other
requirements, a service(s) selection is made.

Composition When needed, a new service is composed and published, based on the ser-
vices selected in the previous phase.

Management This phase includes the deployment, configuration, licensing and activation
of services.

Usage In the usage phase, the utilization of a service is monitored and logged. This
phase also includes the process of usage feedback gathering and reports and
statistics generation.

Table 3.3: Phases of the service-based software life cycle

3.2.3 Differences and Similarities

Observing both life cycles, one could conclude that both cycles are quite similar in terms of what
the cycles are life cycles of — namely, software — and how this software is evolving through
the different phases of its life cycle. In both life cycles, a similar pattern with respect to the
characteristics of the life cycle phases can be observed. The phases of both life cycles can be divided
in three stages: ‘creation and publication’, ‘configuration and management’ and ‘utilization and
monitoring’. See figure 3.2.

1. First, the software is created and published. In the component-based software life cycle,
the process of software creation and publication comprises the development, release and
delivery phases. Analyzing the service-based software life cycle, the phases ‘development’
and ‘discovery’ are comprised by this process. Web services that are composed of other, more
fine-grained services (composite services), also pass through the selection and composition
phases. When this stage (stage 1) is completed, the software that is subject to management,
utilization and monitoring, is defined. In the component-based software life cycle, this stage
is completed after completing the delivery phase. With respect to the service-based software
life cycle, stage 1 is completed after completing the composition phase.

2 The management of a particular service could also entail the discontinuity of this service.

30 SKU: Service Knowledge Utilization

Views on the Software Life Cycle 3.2

2. Second, the software is configured and managed. Observing the component-based software
life cycle, the process of software configuration and management comprises the deployment
and activation phases. In the service-based software life cycle, this process is implemented
by the management phase. Having completed stage 2, software is ready to be utilized and
monitored.

3. Third, the software is utilized and monitored by humans or other software. Furthermore,
feedback concerning the software is gathered. Obviously, this stage is implemented by the
usage phase of both the component-based software life cycle and the service-based software
life cycle.

1. Creation
and publication

2. Configuration
and management

3. Utilization
and monitoring

Stage
Life cycle phase

Component-based software Service-based software

Development

Release

Delivery

Development

Discovery

Selection

Composition

Deployment

Activation

Management

Usage Usage

Figure 3.2: Differences and similarities between the component-based software life cycle and the service-
based software life cycle

Once component-based or service-based software is deployed, its life cycle continuously runs
through the stages ‘configuration and management’ and ‘utilization and monitoring’ — until the
software is discontinued (e.g. uninstalled at the configuration and management stage). Inde-
pendent of the software type (component-based or service-based), software vendors update their
software regularly. At that moment, the software switches from ‘utilization and monitoring’ to
‘configuration and management’. When the software is updated, or unsolvable update issues oc-
cur, the reverse switch is made. A more detailed illustration of these situations is provided in
section 3.5.

A number of differences between both life cycles can be observed. First, a noticeable difference is
the absence of a release phase in the service-based software life cycle. Regularly, service software is

SKU: Service Knowledge Utilization 31

3.3 Service Types

accessed via its address (URL) and a web browser. New releases, updates and patches are directly
published and applied ‘from behind the scenes’ to the client or end-user — at most, the client or
end-user is redirected to another location in order to detect the changes. Google [44] added several
features (e.g. chat, color labels, rich text editing) to its mail service Gmail3 just by updating the
service ‘server-side’ — no specific action was needed from the end-users in order to be able to use
the new features. The online personalized start page service Netvibes4, a typical Rich Internet
Application (RIA) similar to Gmail, is updated similarly: several releases are published, without
requesting any significant effort from the end-users.

Secondly, a difference that is also observed by Jansen [56], is the absence of a delivery phase
(or a comparable phase) in the service-based software life cycle. This is because with respect
to service-based software (life cycles), no delivery start- or endpoint (or periods) in time can be
indicated. The delivery of service-based software takes place in a completely transparent manner,
mostly virtually and through widely-used communication protocols of the Internet, like SOAP
(see section 1.2.1.2) or the Hypertext Transfer Protocol [40] — unlike component-based software,
service-based software usually is not delivered in a physical form (e.g. a software package with a
CD or DVD).

Thirdly, the service-based software life cycle has no explicit deployment phase. While service-based
software has to be deployed before it can be used, the process of service deployment is of a smaller
scale than that of component-based software. This is mainly because of the fact that in order
to use the software, services often are installed (or updated) at one server (‘entry point’), while
the use of component-based software may require installation in numerous software and hardware
environments (on all PCs of the employees of an enterprise department, for example). In some
cases, service-based software does not have to be deployed at all, for example when software
development is done at a web server.

Concluding, the release and deployment phases of the service-based software life cycle are less com-
plex and of a smaller order than these of the component-based software life cycle, while the delivery
phase is even completely absent in the former life cycle. Therefore the release and deployment
phases are incorporated in the discovery and management phases, respectively, since ‘discovery’
includes the publication of a service and in the service-based software life cycle, ‘management’ is
the only phase in the configuration and management stage.

3.3 Service Types

Whether a service passes through the life cycle phases ‘selection’ and ‘composition’, depends on
the type and granularity of a service. Krafzig et al. [66] present a service type classification by
defining four types of services:

• Basic services

• Intermediary services

• Process-centric services

• Public Enterprise5 services

Depending on the type and granularity of a service, the life cycle phases ‘discovery’, ‘selection’
and ‘composition’ are optional. Table 3.4 gives an overview of the different service types6.

3 http://gmail.com
4 http://netvibes.com
5 The type and role of the ‘Public Enterprise’ mentioned here are corresponding to those of the service-oriented

enterprises in figure 1.2 of the thesis introduction.
6 The table is adapted from, and based on the work by Krafzig et al. [66]

32 SKU: Service Knowledge Utilization

Service Types 3.4

Criterion Basic Intermediary Process-centric Public Enterprise

Description Simple data-
or logic-centric
services

Technology
gateways,
adapters

Services encap-
sulating process
logic

Services shared with
other enterprises or
partner organizations

Impl. com-
plexity

Low–moderate Moderate–
high

High Service-specific

State
management

Stateless Stateless Stateful Service-specific

Reusability High Low Low High

Change
frequency

Low Moderate–
high

High Low

Granularity Fine-grained Fine-grained–
coarse-grained

Coarse-grained Service-specific

Full life
cycle

No Yes Yes Service-specific

Example Stock quote
Web service

ERP adapter
service

Airline ticket
reservation ser-
vice

Shipment tracking
service

Table 3.4: Service type comparison (adapted from [66])

Analyzing this service type overview, one can observe that typically services that have high imple-
mentation complexity, low reusability and a high change frequency (‘intermediary’ and ‘process-
centric’ services) evolve during the complete service-based software life cycle — including the life
cycle phases ‘selection’ and ‘composition’. These characteristics indicate that such a service is
considerably complex, likely consisting of a number of finer-grained services and relating to a spe-
cific business process. These types of services are difficult to implement and are subject to many
changes. Because a high composite service implementation change frequency may imply a high
service composition change frequency (e.g., the selection of basic services a composite service ex-
ists of, is altered), it is likely that coarse-grained, composite services (i.e., legacy systems adapter
services or ticket reservation services) pass the the optional phases of the service-based software
life cycle more frequently than basic services.

On the contrary, basic and highly reusable services (like a stock quote service or a weather forecast
service) have a low change frequency and are relatively easy to implement. Because of the fine-
grained character of basic services, it is not likely that basic services are composite services. Mainly
because of the low change frequency, it is unlikely that such services go through both selection
and composition phases of the service-based software life cycle. See figure 3.4.

SKU: Service Knowledge Utilization 33

3.4 C-CCU and Service-based Software

3.4 C-CCU and Service-based Software

Having described both software life cycles, in this section, the C-CCU model is discussed with
respect to service-based software and the service-based software life cycle.

3.4.1 Definition

Jansen indicated that automating steps in the process of Customer Configuration Updating (CCU),
which he defines as ‘the release, delivery, deployment and usage and activation processes of product
software’ [57], ultimately contributes to Continuous CCU, enabling a software vendor to become
more responsive to changes in customer and market demands.

Obviously, the definitions of both CCU and C-CCU (see section 1.4) are mainly targeted on, and
applicable to component-based software — which becomes clear by observing the life cycle phases
of the component-based software life cycle. Concerning the application of the C-CCU concept to
service-based software, this is problematic.

As described in section 3.2.3, the life cycles of both software types only match in stage 3 (‘utilization
and monitoring’). While both life cycles entail creation, configuration, and utilization stages,
the cycles differ in the first two stages: the service-based software life cycle lacks a delivery
phase, and its release and deployment phases are significantly shorter than the component-based
equivalents (the phases are incorporated in the discovery and management phases of the life cycle,
respectively). See figure 3.2.

Apart from its focus on component-based software, the concept of C-CCU relies on the (quality
of) releases of software — as illustrated by the definition of the concept. Obviously, this is also
problematic in applying C-CCU to service-based software, since the release phase of the service-
based software life cycle forms a small and relatively little time-consuming phase compared to
other phases in its life cycle.

Observing these limitations, C-CCU can only partly be applied to service-based software and Web
services. Analyzing figure 1.4, only the logging and feedback aspects (policies) of the C-CCU
model are completely applicable to this type of software. This is also visualized by the life cycle
comparison in figure 3.2. Both life cycles only completely match in the utilization and monitoring
stage (usage phases).

Therefore, a new term is introduced, taking into account the limitations described above: ‘Service
Knowledge Utilization’ (SKU). SKU describes the application of C-CCU to service-based soft-
ware, and expresses to which extent (or: on which area) the concept of C-CCU is applicable to
service-based software. SKU focuses on the third stage of the software life cycles (‘utilization and
monitoring’) and is defined as follows.

Service Knowledge Utilization Using service performance, usage and feedback knowledge to
support the software development and maintenance processes and make software vendors
more flexible and responsive to service performance and usage changes, both at specific
customers and concerning their software in general.

As may be clear, to enable a software vendor developing service-based software to become more
flexible and responsive to performance and usage changes in its software, the role of service knowl-
edge (and the utilization of this knowledge, SKU) is of high importance. This is explicated in
section 3.4.2 and 3.8.

34 SKU: Service Knowledge Utilization

C-CCU and Service-based Software 3.4

3.4.2 Software Vendor Responsiveness

The introduction of this thesis already pointed out the increasing demand on enterprises (and
specifically software vendor organizations) to be highly dynamic and agile organizations and to
respond quickly to market situations, demands and changes. As concluded earlier by Jansen [60],
and confirmed by findings in [9], implementing C-CCU in a software vendor’s organization reduces
overhead from various software life cycle processes, enabling this organization to become more
responsive to change.

In the context of concept of service knowledge utilization presented in this thesis, we define a
software vendor’s responsiveness as follows.

Responsiveness The speed at which changes are implemented based on service performance,
usage and feedback data, relative to the size of the changes.

While the ability to be responsive to changes in customer and market demands is important to
software vendors developing component-based software, this ability is important to companies that
develop service-based software (e.g. Web services), too — both in business to business (B2B) and
business to consumer (B2C) environments (see figure 1.2). Software vendors developing software
services for companies that have implemented a service-oriented architecture successfully, may
need to respond even earlier and quicker. This is illustrated by examples below.

A small software company called Terra Computing develops a route planning service.
Based on a start- and end location, the route planning service presents the fastest route
between both locations, based on recent traffic data. The service is based on two 3rd
party services: one for acquiring map data, and one for acquiring traffic data. Terra
Computing’s service views maps — on which the actual route is drawn — by utilizing
the acquired map data. The software vendor has contracted Microsoft to provide this
geographical data. To this end, Terra Computing licensed Microsoft’s Live Search
Maps Web service. However, at one day, the software vendor receives an offer from
Google concerning the use of its Google Maps service. After having investigated the
Google’s service, the Terra Computing decided it wanted to replace the Live Search
Maps Web service (and its corresponding license) by the map service of Google, based
on the extra functionality it provides and its lower costs.

In the example of Terra Computing above, Microsoft’s map service is replaced by a similar service
of Google. Especially when the offered functionality of the service is similar, both services are
easily interchangeable, enabling the software vendor to switch services without vast architecture
changes. At the same time, another software company (Microsoft) is losing a customer within one
day.

Web Mobile offers a short message service (SMS) Web service, enabling 3rd parties
as well as end-users to send free SMS messages via the Internet. The service was an
enormous success in the first months after its initial release. However, by analyzing
the web server’s logs, Web Mobile’s system administrator discovered a steady decrease
in the amount of visitors and messages sent per day. Further analysis of the market
situation points out that the day before the amount of visits started to decrease, Web
Mobile’s main competitor published a similar service, with extra features (sent multiple
messages at once, receive read confirmation) and an easy-to-use user interface.

As the examples above illustrate, customer relationship management (CRM), customer commu-
nication and service knowledge are important to software vendors, especially during the time
software is actually used by customers and clients. When software vendors gather and utilize

SKU: Service Knowledge Utilization 35

3.5 SKU Process Model

knowledge about the performance (number of exceptions, response time, etc.) and usage of their
software and feedback and wishes of their customers, situations described in the example above
might be prevented, or prevented earlier. Instead of directly switching services, the software ven-
dor of the example above could also demand extra functionality of Microsoft — with the effect
that Microsoft’s service offers the same functionality as Google’s service and the software vendor
decides not to change services — for example. Web Mobile’s customers may have kept using Web
Mobile’s message service instead of ‘blindly’ switching to another SMS service, when Web Mobile
introduced new features earlier.

Factors that influence the responsiveness of a software vendor are detailed in section 3.8. In the
next section, the SKU process model is presented. By visualizing important knowledge streams
and processes with respect to the communication between the software vendor developing service-
based software and the customer, this model forms the basis of the SKU-SSN model (presented
in section 3.6).

3.5 SKU Process Model

The previous section illustrates that for a software vendor developing service-based software,
knowledge about the service performance, usage and feedback is required to be an agile and
dynamic organization that responds quickly to market changes and customer demands. In this
section, the SKU process model is presented. The SKU process model depicts important knowl-
edge streams and activities within the process of service knowledge utilization (i.e., continuous
customer configuration updating for service-based software). The model is described by using the
process-deliverable diagram (PDD) technique [104], see figure 3.3.

3.5.1 Concepts

The SKU process model consists of six main activities (development, discovery, selection, compo-
sition, management and usage), every activity corresponding to a particular phase of the service-
based software life cycle. Various concepts are important to complete the activities. Important
concepts within this model (and within the service-based software life cycle) are described below.

component A binary unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and is
subject to composition by third parties [100]. It can form a part of a service. See section 3.1.1.

service A coarse-grained, discoverable software entity that exists as a single instance and inter-
acts with applications and other services through a loosely coupled, message-based com-
munication model [34]. Often registered in a service repository. Can be composed of
components or other, finer-grained services. See section 3.1.2.

interface definition Defines a set of public service method signatures, logically grouped but
providing no implementation [34]. An interface defines a contract between the requester and
provider of a service. Any implementation of an interface must provide all methods. When
a service is published, its interface identifies and represents the service and enables its
dynamic discovery. See section 1.2.1.2.

service repository A registry framework that enables the description and dynamic discovery
of web services. See section 1.2.1.2.

usage log A data record containing software (service) usage data. Based on [38], this log con-
tains software service identification and configuration information, as well as operations and
events details.

36 SKU: Service Knowledge Utilization

SKU Process Model 3.5

Third party*

Software vendor

End-user

Development

Discovery

Selection

Composition

Management

Usage

Publish service

Discover service

Elicit service requirements

Develop service

Elicit service requirements

Deploy service

Select services

Compose service

Define selection criteria

Publish service

Configure service

License service

Activate service

Log service utilization

Monitor service utilization

Use service

Gather feedback

Generate statistics and report

[else]

[Service license or subscription

is discontinued]

SERVICE REPOSITORY

SERVICE COMPONENT

INTERFACE DEFINITION

name

location

service level

method definitions

message definitions

data type definitions

binding definitions

is described by

1

1

1..* 1..*

Discover services

1

1..*

1

1..*

[no new development needed][Selection criteria

require development of

new, finer-grained service]

[else]

BUG DATABASE

BUG RECORD

vendorid

serviceid

method description

bug description

datetime

1..*

1

is generated with

1..*

1..*

0..*

0..*

Log exception

[Exception has occured]
[else]

[No service management needed]

[Service management needed]

[Composite service needed] [Basic service needed]

[Developed service

is basic service and is

part of composite service]

USAGE AND FEEDBACK

DATABASE

USAGE LOG

vendorid

serviceid

service name

service version

service availability

service performance

service configuration

method description

event description

datetime

1..*

1

1..*

1

is generated with

FEEDBACK REPORT

vendorid

serviceid

method description

feedback

datetime

Software developer

Software developer

Software developer

Software developer

End-user

Third party*

Software knowledge gathering software

Test service

Discover service

STATISTICAL USAGE

REPORT

Figure 3.3: SKU process model

SKU: Service Knowledge Utilization 37

3.5 SKU Process Model

feedback report A data report containing user feedback and user experience data.

usage and feedback database A database containing usage logs and feedback reports.

statistical usage report A report, containing performance, usage and feedback statistics,
based on usage logs and feedback reports in the usage and feedback database.

bug database A database containing bug records.

bug record A data record capable of containing bug information, including vendor-, service-
and method data.

In the next section, the parties depicted in the model are characterized.

3.5.2 Parties

All activities and concepts within the SKU process model are grouped within a party: software
vendor, end-user or third party. Like figure 3.3 depicts, the usage and feedback database could
be located at a ‘third party’. This is the case, for example, when neither the software vendor
nor the end-user’s organization has the capacity or resources to host this database. A software
vendor or an end-user’s organization may decide to outsource the service management activities
and responsibilities to a third party likewise.

However, one should note that regarding the location of the usage and feedback database, various
scenarios are plausible. This database may be hosted at the software vendor, at a third party,
or at the end-user’s organization. Nevertheless, the usage and feedback database may also well
be hosted at both organizations — as is assumed in the SKU-SSN model (see section 3.6). The
management activities may well be executed at one of the three parties, too7.

3.5.3 Activities

The first four activities of the SKU process model are typically passed by and passed at a software
vendor. However, depending on the service granularity, the discovery, selection and composition
activities of both the SKU process model and the Web service life cycle are optional (as indicated
in section 3.2.3). The last two activities, ‘Management’ and ‘Usage’, are phases the end-user
(or third party) goes through. Within each activity, the main sub activities of that activity are
depicted.

It is important to note that the activities at both the software vendor and the end-user’s orga-
nization are separate processes that take place continuously. The activity link between software
vendor (‘Discover service’) and end-user’s organization (‘Deploy service’) is only passed when the
end-user’s organization decides to deploy a new service. Apart from that situation, the SKU
process model represents two separate processes — one at the software vendor, and one at the
end-user’s organization — taking place continuously.

Another point of attention is formed by the first three activities taking place at the software vendor:
development, discovery and selection. If the software vendor initiates the ‘Development’ activity
with the intention to only create a basic service, the ‘Development’ and ‘Discovery’ activities are
passed and sequentially, the ‘Management’ activity is entered. However, if the ‘Development’
activity is initiated to develop a composite (intermediary or process-centric) service, the discovery
activity is skipped and the selection and composition activities are passed. In that case, a new
development activity may be initiated if the activity ‘Discover services’ (within ‘Selection’) does
not deliver the services needed to create the planned composite service. Because the initiation of

7 This is indicated by the asterisk (*) in figure 3.3.

38 SKU: Service Knowledge Utilization

SKU Process Model 3.5

a new ‘Development’ activity may be recursive (a heavily composite service may consist of finer-
grained, intermediary services, which consist of smaller, composite services, which are composed of
basic services8), this initiation is depicted with a double-headed arrow9. So when the development
activity is entered, the number of activities within the process depends on the type of the service
that is being developed, as well as wether (in the case of a basic service) the service is part of
a composite service. When the development activity is entered as part of a recursive loop (a
composite service is developed), the recursion ends in the ‘Discovery’ activity before the ‘Discover
service’ sub activity — when the granularity of the developed service is such that it can be
considered a basic service, that is. In that case, a second double-headed arrow is passed, returning
to the ‘Selection’ activity again, skipping the activities ‘Gather requirements’ and ‘Define selection
criteria’. Otherwise, the ‘Discovery’ activity was skipped and the ‘Selection’ activity was initiated,
possibly invoking a new recursion.

As depicted in the last two activities of the model, the end of the service-based software life cycle
could end from within the ‘Management’ activity. Within this activity, services are deployed,
configured, licensed and — in case of a valid license or subscription — activated. The life cycle
ends when the service license or service subscription is discontinued. Otherwise, the service is
activated and the ‘Usage’ activity is initiated. Obviously, this activity represents the usage of
the service by end-users. When an (unhandled) exception occurs, a bug record is created which
is stored in the bug database. During and concurrently with the service usage, service usage is
monitored and logged. Usage logs and feedback are stored in the usage and feedback database. A
statistical usage report can then be generated based on the data in this database.

Note that, apart from the logging of usage and feedback (provided) by end-users, a software vendor
may decide to log the data associated with both concepts already in the phases of (pilot) testing or
quality assurance (not depicted in the SKU process model), in order to gather service knowledge
in an early stage.

When service management is needed, the ‘Management’ activity is initiated again. One should
note that this activity can pass very quickly, for example in the case that the activity is initiated
only in order to change one or two configuration parameters. When no service management is
needed, the usage activity is reinitiated.

3.5.4 Relations

The dotted lines represent the relations between concepts (data) and processes (activities). For
example, the model makes clear that the usage and feedback database is filled in the first and last
activities defined in the model (‘Development’ and ‘Usage’). The accentuated lines are essential in
the communication between the software vendor and the end-user. In the SKU process model, this
communication is based on the statistical usage report, and takes place in the following activities.

1. Gather requirements (Development) → Statistical usage report

2. Gather requirements (Selection) → Statistical usage report

3. Generate statistics and report (Usage) → Statistical usage report

Activities 1 and 2 take place at the software vendor, and activity 3 takes places at the end-user’s
organization. When a software vendor decides to develop or compose a new service, it is important
to know about the usage and performance of older or related services (as motivated earlier). In
passing these activities, the software vendor is able to acquire this knowledge by requesting the

8 The number of ‘composition levels’ is actually variable, making this a recursive process.
9 The double-headed arrow is not described in the PDD drawing technique definition, since this technique does

not (yet) support activity recursion [104], and is therefore supplementary.

SKU: Service Knowledge Utilization 39

3.6 SKU in a Software Supply Network

statistical usage report. This report is filled at activity 3, based on exception data, service usage
data and feedback data.

Apart from within the software vendor’s software service development activities, service knowledge
is potentially of use in a number of other activities. This is depicted by the SKU-SSN model,
presented in the next section.

3.6 SKU in a Software Supply Network

Having discussed the SKU process model, the service knowledge utilization in an SSN (SKU-
SSN) model is presented in this section. Mainly focusing on the development department within a
software vendor’s organization, the SKU process model visualizes the process of service knowledge
utilization in the context of the service-based software life cycle. The SKU process model clarifies
which parts of the life cycle occur where (at which parties) and clarifies which concepts play an
essential role in the communication between a software vendor developing service-based software
and its customers.

The SKU-SSN model illustrates the role of a software vendor developing service-based software in
its software supply network (SSN) by visualizing the communication and role of service knowledge
usage (SKU) between on the one hand, the software vendor and external software vendors that
have licensed a one or more services of the vendor (B2B), and on the other hand, the software
vendor and its customers (SOEs) and end-users of that customers (B2C). As such, a software
vendor’s software supply network is composed of its B2B and B2C relations.

As explained below and depicted by the SKU-SSN model, software (usage) knowledge and feed-
back is potentially of use within different management levels — within the software vendor’s
organization itself, or within these of external partners or customers.

Three parties, and a number of relations between them, can be identified.

The Software Vendor The software vendor is the main organization of the SKU-SSN model. It
develops and publishes service-based software that is licensed by service-oriented enterprises
(B2C) and external software vendors (B2B), as indicated by the dashed lines. Service-
oriented enterprises have licensed the software for use within their activities or SOAs, while
external software vendors license services of the software vendor in order to build or support
their own software. In section 3.4.2 for example, it is described how a relatively small external
software vendor, Terra Computing, has licensed Microsoft’s Live Search Maps Web service
to provide data for the route planning service they develop and publish. The services of
both the service-oriented enterprises as the external software vendors are used by end-users.
Note that a software vendor may make its service-based software also directly accessible to
end-users. A vendor may launch a free-of-charge SMS Web service, for example.

External Software Vendors External software vendors may have licensed software of the soft-
ware vendor as an essential part of their own software and services. Note that, as described
in section 1.1.3, the (external) software vendors and their customers (the service-oriented
enterprises) may all be networked companies and be part of a highly-integrated business
network, sharing software and services. In that case, the SKU-SSN model is applicable
to all the external software vendors, interchanging the roles of the software vendor and the
external software vendor but maintaining the B2B relationship between both organizations.

Service-Oriented Enterprises The service-oriented enterprises (SOEs; also see section 1.2.1)
in the SKU-SSN model represent the customers of the software vendor. As illustrated in the
model, the SOEs have licensed service software of the vendor. This software may well be part
of the enterprise’s SOA service portfolio and may be needed for internal use (by employees)

40 SKU: Service Knowledge Utilization

SKU in a Software Supply Network 3.6

S
o

ft
w

a
re

 V
e

n
d

o
r

M
a

n
a

g
e

m
e

n
t

B
u

s
in

e
s

s
 p

e
rs

p
e

c
ti

v
e

O
rg

a
n

iz
a

ti
o

n
 p

e
rs

p
e

c
ti

v
e

D
e

v
e

lo
p

m
e

n
t

p
e

rs
p

e
c

ti
v

e

Management

meetings

E
x

te
rn

a
l

S
o

ft
w

a
re

 V
e

n
d

o
rs

E
n

d
-u

s
e

rs

C
li

e
n

t
(I

n
te

rn
e

t
b

ro
w

s
e

r,

c
li

e
n

t
a

p
p

li
c

a
ti

o
n

)

S
K

U

S
e

rv
ic

e
s

D
B

S
K

U

re
p

o
rt

A
c
ti

o
n

s

(W
e

b
)

A
p

p
li

c
a

ti
o

n

s
e

rv
e

r

S
e

rv
ic

e
-O

ri
e

n
te

d
 E

n
te

rp
ri

s
e

s

M
a

n
a

g
e

m
e

n
t

D
B

S
e

rv
ic

e
s

L
e

g
a

c
y

a
p

p
li

c
a

ti
o

n

W
S

D
L

in
te

rf
a

c
e

E
n

te
rp

ri
s

e
 S

e
rv

ic
e

 B
u

s

S
e
rv

ic
e

w
ra

p
p

e
r

(W
e

b
)

A
p

p
li

c
a

ti
o

n

s
e

rv
e

r

L
ic

e
n

s
e
d

 w
e
b

s
e
rv

ic
e
s

W
S

D
L

in
te

rf
a

c
e

s

S
e

rv
ic

e
s

L
ic

e
n

s
e
d

 w
e
b

s
e

rv
ic

e
s

W
S

D
L

in
te

rf
a

c
e

s

D
B

A

B

B

B

C
C

L
ic

e
n

s
e

A
S

e
rv

ic
e

 r
e

q
u

e
s

t

B
C

o
n

fi
g

u
ra

ti
o

n
 p

a
ra

m
e

te
rs

,
u

p
d

a
te

s
,

li
c

e
n

s
e

s
,

n
e

w
s

,
..

.
C

U
s

a
g

e
 a

n
d

 F
e

e
d

b
a

c
k

 d
a

ta

S
K

U
 r

e
p

o
rt

D

D

B
2

B
B2C

(W
e

b
)

A
p

p
li

c
a

ti
o

n

s
e

rv
e

r

B

B

C
o

m
p

o
n

e
n

t-

b
a
s
e
d

 s
o

ft
w

a
re

S
e

rv
ic

e
 w

ra
p

p
e
r

W
S

D
L

in
te

rf
a

c
e

W
e
b

 s
e
rv

ic
e
s

W
S

D
L

in
te

rf
a

c
e

s

M
a

n
a

g
e

m
e

n
t

B
u

s
in

e
s

s
 p

e
rs

p
e

c
ti

v
e

O
rg

a
n

iz
a

ti
o

n
 p

e
rs

p
e

c
ti

v
e

D
e

v
e

lo
p

m
e

n
t

p
e

rs
p

e
c

ti
v

e

Management

meetings

D

Figure 3.4: SKU in a software supply network (SKU-SSN) model

SKU: Service Knowledge Utilization 41

3.7 SKU in a Software Supply Network

or external use (by end-users). Note that a service-oriented enterprise may license and use
service-based software of the software vendor and one or more external software vendors
concurrently.

End-users End-users represent the people that use service-based software of (external) software
vendors and service-oriented enterprises. End-users generate ‘service demand’ (see the A-
lines in the model) and drive all other parties in the SKU-SSN model to develop and publish
their software and services. Described in the introduction of this thesis, software vendors
increasingly try to adapt to market (end-user’s) demands. The SKU-SSN model illustrates
a manner to achieve a high level of responsiveness to changes in market, customer and
end-user demands. Note that end-users do not directly obtain licenses for the service-based
software they use.

At all parties that have licensed and utilize one or more services, the usage and feedback of these
services is logged. The resulting usage and feedback data is stored in a local database10. On a
regular basis, relevant data in these local databases is transported to a main usage and feedback
database at the software vendor that has developed and published the service-based software of
which the usage and feedback is logged11. See the B-lines in the model.

After a pre-defined period, the main usage and feedback database at the software vendor is filled
with usage and feedback data of all services licensed by external software vendors and service-
oriented enterprises. As depicted in the model, two products, both based on the received services
usage and feedback data, can be identified: the SKU report (equivalent to the statistical usage
report of the SKU process model) and a set of actions.

Detailed in section 3.7, the SKU report quantifies the usage and feedback of the service-based
software involved and contains three indices that express the software quality in terms of perfor-
mance, usability and customer usage. The report has a number of applications (see D-lines in
model). First, this report is of use within the software vendor itself, giving the vendor insight in
the usage and feedback behavior of its customer base. Secondly, the report is potentially of use in
maintaining both B2B (software vendor to external software vendors) and B2C (software vendor
to service-oriented enterprises) relationships. See section 3.7.4.

Apart from the SKU report, the software vendor may define a set of actions that may be based
on particular aspects of the usage and feedback data in the main usage and feedback database.
Each action definition consists of one or more conditions. When all (or any) conditions are met,
the action is triggered. For example, one could define an action describing that an e-mail has
to be sent to Support when a customer has experienced more than one exception on one day.
Another action could describe that a ‘Software Change Request’ has to be created when a service
method is not used for more than one month. Moreover, based on one or more conditions, actions
may also describe to send specific service configuration parameters, updates, license information
or company news to a particular customer in specific situations (C-lines in model), therewith
fulfilling the demands and wishes of that customer or adapting to a new market situation.

In the next section, the SKU report is presented. As part of the construction of this report,
three indices are calculated. These indices represent the status of a software vendor’s services in
terms of performance, usability and customer usage. Being generated from usage and feedback
data, the SKU report forms an essential part of the SKU-SSN model and the success of an SKU
implementation.

10 Note that, as illustrated by the SKU process model, this database may also be located at a third party.
11 While in the SKU-SSN model, distinct databases are depicted at each party, the amount of databases may vary.

One database located at the software vendor, with all B-lines directed to it, is another plausible situation.

42 SKU: Service Knowledge Utilization

SKU Report 3.7

3.7 SKU Report

As already argued by Mendelson and Ziegler [75], information awareness (‘knowing what is going
on in the surrounding world’) is becoming increasingly important for enterprises. The authors
state that this awareness is critical for survival in the information technology era — let alone
the network era. The first process that can be utilized to increase the information awareness of
an enterprise is titled ‘Listening to the Customer’ [75]. In order to improve their customer and
information awareness, enterprises should consider their customers as partners and as the primary
source of information, innovation and renewal.

The purpose of this SKU report is to contribute to a (customer) information awareness increase,
as well as an increase of the utilization of this information (SKU). This section describes the
structure, contents and potential applications of the SKU report.

3.7.1 Terms and Definitions

The SKU report contains data and information about a number of concepts. Before detailing the
structure of and information in the report, these concepts have to be defined. See the list below.

• Customers The software vendor’s customers of which the usage and feedback data are
gathered, are represented by the set C, which is defined as C = {c1, ..., cn}.

• Services The services developed and published by the vendor are represented by the set S,
which is defined as S = {s1, ..., sp}. Each customer c ∈ C has licenses for a collection of
services. The services licensed by customer ci are represented by the set Si, which is defined
as Si = {si(1), ..., si(v)}.

• Methods Every service sj ∈ S has a set of published methods. The methods of a service
sj are represented by the set Mj , which is defined as Mj = {mj(1), ...,mj(q)}.

• Events The set of all events that took place during the execution of all services s ∈ S is
defined as E = {E1, . . . , Ep}. The set of events that took place during the execution of a
service sj is represented by the set Ej , which is defined as Ej = {ej(1), ..., ej(r)}.

• Event Types A number of event types exist, which are defined as T = {t1, . . . , tw}.

The concepts above are subject to two constraints:

• In the context of the report, the number of services a software vendor’s customer ci has
licensed can not be larger than the number of services the software vendor has published.
Furthermore, the SKU report only contains data and information about licensed services:
Si ⊆ S.

• Every event e ∈ E has an unique type t ∈ T : ∀e ∈ E : t(e) ∈ T .

When studying the metrics and indices described in section 3.7.3, one may note that of all concepts,
the ‘event’ concept is not mentioned within that context. For example, events are not explicitly
used as part of the service indices construction. This is because an event has a rather abstract and
intangible character, making the concept of an event unsuitable to measure performance, usability
or utilization of. Therefore, events mainly play a role in the construction of metrics and in the
context of service usage logging, for example in the registration of exceptions that occur while using
a service. Similarly, the concept of an event type is introduced to enable event categorization in
the process of service usage logging.

SKU: Service Knowledge Utilization 43

3.7 SKU Report

3.7.2 Structure and Contents

For each method of each service, the report contains metrics, calculated in order to quantify and
measure the status and quality of the services used by customers. The report contains a lot
of data because, for example, the software vendor has published a large number of services, or
because the software vendor has a large customer base. Furthermore, the SKU report may well be
generated on a frequent basis: as described in the introduction of this thesis, nowadays, software
vendors have to respond quickly to market changes and customer demands. Therefore, a report
that increases the information awareness, may be generated frequently.

The content of an SKU report should be easily interpretable. Specifically, the statuses of the
services contained in the SKU report should be comparable with those of earlier reports. There-
fore, in an SKU report, the status of a software vendor’s services is summarized by the set of
metrics-based indices.

3.7.3 Metrics and Indices

The research community has developed a wide range of metrics to measure and quantify the quality
of services [62]. The metrics listed below were selected by way of a literature study focussing on
the extent the metrics express service performance, usability and usage. This range of metrics
(Reliability, Throughput, Latency, Accuracy, Availability, Usability, Reputation) is suggested by
Farrell and Kreger [38] as useful information that a software infrastructure for managing and
monitoring Web services can collect for a Web service, and is also used in QoS-related research [74;
117]. In the context of this thesis research, the metrics are used to construct three service indices
that express the status of service-based software.

Reliability The term ‘Reliability’ has a number of definitions. It is defined as ‘the probability
that a request is correctly responded within a maximum expected time frame’ [119], or as ‘the
quality aspect of a Web service that represents the degree of being capable of maintaining the
service and service quality ’, referring to the assured and ordered delivery for messages being
sent and received by service requesters and service providers [93]. We define Reliability as
‘The rate of successfully finished transactions’ [73].

Throughput We define the throughput of a service as ‘the number of (successfully) completed
service requests over a time period ’ [90]. When the throughput of a given system increases,
the system response time increases. Often, throughput is measured in requests per time
unit [108]. One should note that this metric especially is of importance with respect to
process-centric services. Generally, services of this type have to meet a specific demand, and
therefore guarantee a specific throughput level.

Latency Latency is defined as the ‘time taken between the moment the service request arrives
and the moment the request is being serviced ’ [90]. We define the latency of a service as ‘the
round-trip time between sending a request and receiving the response’ [93]. The throughput
of a system (service) is related to its latency.

Accuracy Generically, ‘accuracy’ is defined as ‘percentage of objects without data errors such as
misspellings, out-of-range values, etc.’ [78]. More specifically, we define accuracy as ‘the error
rate produced by a service’ [90]. In practice, this metric indicates the amount of unhandled
exceptions a service or service method generates.

Availability The term ‘Availability’ has various definitions: ‘The quality aspect of whether the
Web service is present or ready for immediate use, and represents the probability that a
service is available.’ [93], ‘The percentage of time a source is accessible based on technical
equipment and statistics’ [78] or ‘The probability a system is up’ [90; 108]. In this thesis, the
latter definition is used.

44 SKU: Service Knowledge Utilization

SKU Report 3.7

Usability A lot of research has been done on the subject of usability and Human Computer
Interaction (HCI) [7; 33; 80; 92; 97] and with respect to the development of usability metrics
specifically [37; 49; 96; 120], resulting in different definitions. Frequently, ‘usability’ is
defined as ‘a technology’s capability to be used easily, enjoyably, safely and quickly ’ [33; 92].
According to the ISO, usability is the ‘extent to which a product can be used by specified
users to achieve specified goals with effectiveness (accuracy and completeness with which
users achieve specified goals), efficiency (resources expended in relation to the accuracy and
completeness with which users achieve goals) and satisfaction (freedom from discomfort, and
positive attitudes towards the use of the product) in a specified context of use.’ [43]. Seffah
et al. [96] developed a consolidated usability measurement model based on the research of
Shackel [97] and Nielsen [80]. The model identifies a number of usability criteria, among
others the ‘minimal action’ criterion is identified: ‘The capability of the software product to
help users achieve their tasks in a minimum number of steps’. Given the nature and role
of Web services within the context of this research — users actively ‘interact’ with a Web
service via its graphical user interface (when applicable) — the usability of Web services is
defined as the ‘minimal action’ criterion.

Reputation ‘The reputation of a service is a measure of its trustworthiness. It mainly depends on
end user’s experiences of using the service. Different end users may have different opinions
on the same service’ [119]. Within the context of this research, reputation of a service
is expressed in a ‘user grade from 1 to 10 based on personal preferences and professional
experience’ [78].

Notation Description

qRel(mj(k)) The reliability of a method mj(k)

qT (mj(k)) The throughput of a method mj(k)

qL(mj(k)) The latency of a method mj(k)

qAcc(mj(k)) The accuracy of a method mj(k)

qAv(mj(k)) The availability of a method mj(k)

qU (mj(k)) The usability of the graphical interface of a method
mj(k)

qRep(mj(k)) The reputation of a method mj(k)

q{Rel,T,L,Acc,Av,Rep,U}SLA
(sj) The minimal (or maximal), often guaranteed value

of a metric (specified as (a part of) a service level
within an SLA or service contract)

Table 3.5: Metrics notation

SKU: Service Knowledge Utilization 45

3.7 SKU Report

The notation of the metrics defined above is depicted in table 3.5. mj(k) represents a method of a
service sj published by a software vendor. Note that the values of the metrics will always be real,
non-negative numbers, so

{qRel, qT , qL, qAcc, qAv, qRep} ∈ R

Before further detailing how the service indices are constructed, it is important to observe that
services may be bound to service contracts and corresponding service levels, specifying the required
performance of a service12. Specifically, such a contract is a Service Level Agreement (SLA)
between the service provider and the service requester (for example, between Terra Computing
and Microsoft in the example of section 3.4.2), among others describing (un)acceptable service
levels [70; 107]. A service level is defined as some mark by which to qualify acceptability of
a service parameter [70] (aspect), for example a guaranteed minimal availability of a service.
Research has been done to specify and monitor SLAs specifically for Web services [64; 65].

Concerning the construction of the service indices, for all metrics, service levels are used to calculate
the metric scores. Depending on the type of service level (minimal or maximal), two types of metric
scores can be identified. The first type applies to the metrics Reliability, Throughput, Availability
and Reputation and is defined as follows.

r{Rel,T,Av,Rep}(mj(k))

{
1.0 q{Rel,T,Av,Rep}(mj(k)) ≥ q{Rel,T,Av,Rep}SLA

(sj)
q{Rel,T,Av,Rep}(mj(k))

q{Rel,T,Av,Rep}SLA
(sj)

q{Rel,T,Av,Rep}(mj(k)) < q{Rel,T,Av,Rep}SLA
(sj)

In other words, if the Reliability, Throughput, Availability or Reputation of a service method is
equal to or greater than the corresponding minimal value of that metric prescribed in the SLA,
the metric score of the service method on that metric is equal to 1.0 — the method is operating
according to its service level. Otherwise, the metric score is equal to the Reliability, Throughput,
Availability or Reputation metric value, divided by the corresponding SLA value for that metric.
If the metric score of a method is equal to 0.0, the method is failing maximally (because its service
is offline, or always throwing an unhandled exception, for example) with respect to its SLA.

The second metric score type applies to the metrics Latency, Accuracy and Usability. This metric
score type is defined as follows.

r{L,Acc,U}(mj(k))

{
1.0 q{L,Acc,U}(mj(k)) ≤ q{L,Acc,U}SLA

(sj)
q{L,Acc,U}SLA

(sj)

q{L,Acc,U}(mj(k))
q{L,Acc,U}(mj(k)) > q{L,Acc,U}SLA

(sj)

In other words, if the Latency, Accuracy or Usability of a service method is equal to or less than
the corresponding maximal value of that metric prescribed in the SLA, the metric score of the
service method on that metric is equal to 1.0 — the method is operating according to its service
level. Otherwise, the metric score is equal to the Latency, Accuracy or Usability metric SLA value,
divided by the value of that metric. Again, if the metric score of a method is equal to 0.0, the
method is failing.

Because of the inclusion of the metric SLA values q{Rel,T,L,Acc,Av,Rep,U}SLA
(sj) in the calculation

of the metric scores, both r{Rel,T,Av,Rep}(mj(k)) and r{L,Acc,U}(mj(k)) values always are between
0 and zero (including boundaries):

{r{Rel,T,Av,Rep}(mj(k)), r{L,Acc,U}(mj(k))} ⊆ [0, 1]

The metric scores are calculated to eliminate the differences between the domains of the met-
rics listed in this section. Based on the resulting metric score values, three service indices are
constructed.
12 This was already shortly described in the introduction of this thesis, in the context of service providers.

46 SKU: Service Knowledge Utilization

SKU Report 3.7

Service Performance Index Represents the average performance of the services the software
vendor has published.

Service Usability Index Represents the average usability of the services the software vendor
has published. Gives an indication of to which extent users value and rate the services of a
software vendor, and to which extent they are satisfied with using these services.

Service Client Utilization Index Represents to which extent the services the software vendor
has published, are utilized by the clients that have licensed the particular services.

All indices are calculated for each service sj that is contained in the SKU report, as well as
for each method mjk ∈ Mj of each service sj , as well as for all services six of a customer ci.
Furthermore, three ‘aggregate’ service indices are calculated, representing the status of all services
that are licensed by a customer. Next, the construction of the service indices is described.

3.7.3.1 Service Performance Index

The Service Performance Index can be applied on different levels: method level, service level or
customer level. In other words, this index is calculated for all methods mj(k) ∈ Mj of a service
sj , for one service sj or for all services si(x) of customer ci.

π(mj(k)) represents the value of the Service Performance Index for a service method mj(k). Given
a particular service method mj(k), its Service Performance Index is constructed as follows.

π(mj(k)) = rRel(mj(k)) · rT (mj(k)) · rL(mj(k)) · rAcc(mj(k)) · rAv(mj(k)) (3.1)

In words, the Service Performance Index expresses the quality of a method (or service, or collection
of services) in terms of its reliability, capacity (throughput), response time (latency), error rate
(accuracy) and on-line time (availability). Equation 3.2 shows how the Service Performance Index
is calculated for a service si(x) ∈ Si — where Si is the set of services licensed by customer ci —
as the average performance of its methods.

π(si(x)) =

q∑
k=1

π(mix(k))

q
(3.2)

The equation below illustrates how to calculate the Service Performance Index for a customer
ci. This index expresses the average performance of the set of services that this customer has
licensed. The constant factor M is added to stress the aggregate character of the customer-
level service indices, and improve the comparability of customers based on these indices. With
this constant factor included, customer-level service indices ‘rate’ the software vendor’s customers
based on the services they have licensed, on a scale of 0 to M. M = 5, M = 7 and M = 10 are
proven intuitive by research [32].

π(ci) = M ·

v∑
x=1

π(si(x))

v
(3.3)

3.7.3.2 Service Usability Index

Like the Service Performance Index, the Service Usability Index can be applied on method level,
service level or customer level. This index is constructed of two metrics that are not utilized with
respect to the construction of the Service Performance Index: Usability and Reputation.

SKU: Service Knowledge Utilization 47

3.7 SKU Report

υ(mj(k)) represents the value of the Service Usability Index for a service method mj(k). Given a
particular service method mj(k), its Service Usability Index is constructed as follows.

υ(mj(k)) = rU (mj(k)) · rAcc(mj(k)) · rL(mj(k)) · rRep(mj(k)) (3.4)

In words, the Service Usability Index expresses the quality of a method (or service, or collection
of services) in terms of the number of actions a user has to perform to activate the method, error
rate, response time, and user feedback. Equation 3.5 shows how the Service Usability Index is
calculated for a service si(x) ∈ Si — where again, Si is the set of services licensed by customer ci
— as the average usability of its methods.

υ(si(x)) =

q∑
k=1

υ(mix(k))

q
(3.5)

Equation 3.6 illustrates how to calculate the Service Usability Index for a customer ci. This index
expresses the average usability of the set of services that this customer has licensed.

υ(ci) = M ·

v∑
x=1

υ(si(x))

v
(3.6)

3.7.3.3 Service Client Utilization Index

Analogue to the other indices, the Service Client Utilization Index can be applied on method,
service or customer level. κ(mj(k)) represents the value of the Service Client Utilization Index for
a service method mj(k). Given a particular method mj(k), its Service Client Utilization Index is
constructed as follows.

κ(mj(k)) = rT (mj(k)) · rL(mj(k)) · rRep(mj(k)) (3.7)

In words, the Service Client Utilization Index expresses the quality of a method (or service, or
collection of services) in terms of the number of method requests over a predefined period of time,
response time, and user feedback. Equation 3.8 shows how the Service Client Utilization Index is
calculated for a service si(x) ∈ Si — where again, Si is the set of services licensed by customer ci
— as the average client utilization of its methods.

κ(si(x)) =

q∑
k=1

κ(mix(k))

q
(3.8)

Equation 3.9 illustrates how to calculate the Service Client Utilization Index for a customer ci.
This index expresses the average utilization of the set of services that this customer has licensed.

κ(ci) = M ·

v∑
x=1

κ(si(x))

v
(3.9)

Having presented all service index constructions on all levels (methods, services and customers),
note that all metric scores r{Rel,T,L,Acc,Av,Rep,U}(mj(k)) have equal weight in the construction of
each of the service indices. A software vendor may assign different weights to each of the metric
scores, in line with its strategy focus (section 5.1 describes the weights Stabiplan assigns to the

48 SKU: Service Knowledge Utilization

SKU Report 3.7

metric scores). Finally, of observations can be made. First, the domains of some indices are equal
to the domains of the metric scores:

{π(mj(k)), π(si(x)), υ(mj(k)), υ(si(x)), κ(mj(k)), κ(si(x))} ⊆ [0, 1]

In other words, when the value of, for example, π(si(x)) for a service si(x) is equal to 1.0, the
service is performing according to the metric values in its SLA. A value of 0.0 indicates that a
service is maximally failing in meeting its SLA. Secondly, the domains of the service indices on
customer level are as follows.

{π(ci), υ(ci), κ(ci)} ⊆ [0,M]

Obviously, the change in domains is caused by the constant factor M included in the formulas of
all customer-level service indices.

An example of an SKU report can be found in appendix D. In chapter 4 of this thesis, a prototype
providing an SKU implementation (including SKU reports) is presented. An example SKU report
implementation is explicited also in that chapter, as part of the software prototype description.
In the next section, internal and external report applications are detailed.

3.7.4 Report Applications

3.7.4.1 Internal Applications

As depicted in figure 3.4, the SKU report may be of use in three perspectives: the business
perspective, organization perspective and the development perspective. The perspectives find
their origin in the product software research framework of Brinkkemper and Xu [16] and can be
linked to certain management levels. Below, applications of the report in these perspectives are
discussed.

Business Perspective (Strategical Management)

The usage and feedback data in the SKU report is a representation of recent service performance,
usage and feedback by customers and end-users. This data may help to characterize a software
vendor’s customer base and support the process of strategical decision-making on the long term.
The service indices provide an indication of the status of the software vendor’s services in terms
of performance, usability and customer usage. Comparing a report with earlier reports, progress
in terms of SKU could be observed and monitored.

Company Perspective (Tactical Management)

Potentially, the report is also of use within a software vendor from an organizational perspective.
For example, concerning a vendor’s marketing department (tactical decision making), SKU reports
may support the sales and customer relations process. A deeper and more thorough insight in
the characteristics of the vendor’s client base may be provided by the reports, which potentially
supports the communication in particular situations (i.e., customer complaints) or with particular
clients.

For product and release managers, the SKU report may support the process of midterm decision-
making concerning the services developed by the vendor. The usage and feedback data in the
report may help to identify customer base characteristics, define main issues, plan milestones
and divide programmers capacity. Furthermore, based on the information in the SKU reports, a
software vendor could decide to offer customized software licenses and contracts, to all or a specific
group of customers.

SKU: Service Knowledge Utilization 49

3.8 SKU Report

Development Perspective (Operational Management)

The role of usage information and statistics from a development perspective (within a software
vendor’s development department) is twofold. First, because the usage data may include the de-
scription of exception occurrences, frequent analysis of the the SKU reports potentially discloses
severe bugs earlier and may help to reproduce bugs, possibly resulting in shorter overall develop-
ment cycles. Secondly, the service indices defined in section 3.7.3 give the vendor a clear overview
of the status of its software in terms of performance, usability and customer usage. Thirdly, the
reports give insight in the use frequency of (the methods of) a service. Knowledge about customer
wishes and demands could be used well too in the process of software development, possibly re-
sulting in improved incorporation of ‘demand-driven’ functionality into future upgrades or releases
of the software.

Within the support department (also part of operational management), SKU reports may provide
a more thorough understanding of, and insight in the types and amounts of service software bugs
that occur in the software. Furthermore, the reports contain a clear overview of the customer’s
(end-user’s) configuration, as well as an indication of the appreciation of the software by the
end-users.

Furthermore, based on the customer usage, usability and feedback data in the report, training
sessions could be adjusted to focus more on often-used functionality, or on functionality on which
most negative feedback is given by end-users. Finally, as part of the communication from the
software vendor to its customers, the vendor could distribute the customized licenses (defined by
tactical management) and contracts to its customers digitally.

3.7.4.2 External Applications

In line with the developments and observations described in the introduction of this thesis, many
enterprises are in the process of becoming more responsive and flexible with respect to changes
in customer and market demands. With respect to software vendors developing service-based
software specifically, this process can be seen as equivalent to the SKU implementation process.
By increasing the information awareness of the software vendor, the SKU report contributes to
this implementation process.

With respect to both B2B and B2C relationships of a software vendor (depicted earlier in fig-
ures 1.2 and 3.4), as well with respect to SKU level increase, the SKU report and its utilization
are essential: the report contains service usage and feedback knowledge which may be key to man-
agement decisions (at strategical, tactical or operational level) of the enterprise that has licensed
the software.

While the software vendor controls the level of service usage and feedback knowledge sharing to
external software vendors and enterprises, a high level of knowledge sharing may strengthen its
relationship with these companies. Similarly, the software vendor may strengthen the relationship
with both customers and end-users by providing specific configuration parameters, tips and tricks,
company news, etc. (as visualized by the SKU-SSN model).

Cisco Systems, a company known as a networked, virtual enterprise (a very mature extended
enterprise), shares a lot of (for example) procurement and sales information and knowledge to its
suppliers and customers [17; 46]. Furthermore, the company has standardized the way it com-
municates knowledge with its external relations (customers, suppliers, etc.). However, one should
note that companies similar to Cisco, will not share their core knowledge and technologies [46].

Different types of software vendors can be identified based on their service knowledge utilization.
These types are defined in the next section. Each software vendor type is characterized with a
number of corresponding factors.

50 SKU: Service Knowledge Utilization

SKU Characterization 3.8

3.8 SKU Characterization

3.8.1 Introduction

Many factors influence and determine the characteristics of an enterprise. Specifically to software
vendors developing software in this (network era) and the next era, in which the sharing of software
usage and feedback knowledge is essential in order to be (and stay) adaptive and responsive to
changes in customer and market demands, a number of vendor types can be identified, each with
typical properties and characteristics. In section 3.8.2, these types are described in terms of SKU.

As already mentioned in section 3.7, Mendelson and Ziegler [75] argued that information awareness
(knowing what is going on in the surrounding world) is becoming increasingly important for
enterprises. Recognizing the importance of information integration for enterprises, Evgeniou [36]
presented a framework typifying enterprises in terms of flexibility and visibility. Illustrated in
figure 3.5, Evgeniou defines four types of enterprises.

Figure 3.5: Enterprise types defined by Evgeniou [36]

Characterized as the state to which both standardized and decentralized enterprises should as-
pire, becoming both standardized in terms of visibility and decentralized in terms of flexibility,
the Adaptive Enterprise implies high information awareness and high flexibility. The SKU char-
acterization model presented in section 3.8.2 resembles Evgeniou’s model to certain extent. For
example, the horizontal axis of the characterization model is also represents flexibility and the
characterization model also defines an ‘Adaptive’ characterization.

Research has developed a number of enterprise types that, based on certain characteristics, roughly
correspond with the Adaptive Enterprise. One should note that, to some extent, the Adaptive
Enterprise characterization is equivalent to the network orchestrator described in [17; 46] and to
the concept of the Virtual Enterprise (VE) [91; 94; 114]. Specifically focusing on software vendor
enterprises, these enterprise types can be compared on characteristics particularly relevant in the
context of SKU and mainly related to response to changes in customer and market demands.

SKU: Service Knowledge Utilization 51

3.8 SKU Characterization

While all enterprise types play a dominant role in their software supply network and try to be
highly responsive to participants in their SSN, small differences between the enterprise types can
be identified. A comparison of the three enterprise types is detailed in figure 3.613.

Response to
customer and

market changes

Response
driver

Relationship
with SSN

participants

Criterion
Enterprise type

Adaptive Enterprise Virtual Enterprise Network Orchestrator
Retain overall and

real-time insight into
business and market
developments, at all
organization levels

High information
awareness

and flexibility

Response-based,
loose, little trust

Play dominant role by
providing services

portfolio; add partners to
complete customer

offering

Continuous
benchmarking and

improvement, dynamic
reconfiguring

Close and trustful

Construct Virtual
Enterprise out of
enterprises with

competencies best
suitable to demand

Sharing skills,
competencies, data

and information

Tight, but temporary

Figure 3.6: Comparison of the Adaptive Enterprise [36], Virtual Enterprise [94] and the Network Or-
chestrator [17]

3.8.2 SKU Characterization Model

Related to the enterprise types defined by Evgeniou and the enterprise type comparison presented
in section 3.8.1, in this section, four software vendor types are presented in terms of SKU. Each
type corresponds to a particular SKU level and flexibility level. One should recognize that the
SKU characterization model does not define scientific enterprise maturity levels, but provides a set
of enterprise types to identify and recognize software vendors in terms of their service knowledge
utilization.

The software vendor types of the SKU characterization model are characterized based on two
criteria: service knowledge utilization level and flexibility. A number of factors that determine the
SKU level and the flexibility of a software vendor can be defined.

SKU Level

Service Knowledge Gathering The level of service knowledge gathering is directly
related to the level of service knowledge utilization. More specific, a software vendor
that has realized means to gather service knowledge (for example with a service
usage and feedback logging system implementation and SKU reports) and is ready
to utilize this knowledge, has a high SKU level.

Service Knowledge Significance A software vendor will not improve its flexibility
by gathering software (usage) knowledge alone. In order to leverage from service

13 In the context of this thesis research, the ‘Network Orchestrator’ compared in this figure specifically is a ‘knowl-
edge services’ network orchestrator [17].

52 SKU: Service Knowledge Utilization

SKU Characterization 3.8

knowledge, a software vendor will have to be prepared to implement and apply the
gathered service knowledge in and to its existing infrastructure and processes. In
other words, the higher the importance and the actual deployment of the gathered
service knowledge, the higher the flexibility and service knowledge utilization. For
example, a software vendor that analyzes its SKU reports regularly and has defined
actions that should take place when specific conditions are met, continuously shares
its service knowledge with its external partners and concurrently receives service
knowledge from its partners, has a higher SKU than a software vendor that has
implemented means to gather service knowledge, but considers service knowledge
as insignificant — and does not actively utilize the knowledge.

Flexibility

Software Supply Network The environment a software vendor is operating in, in-
fluences the flexibility of a software vendor. For example, regulations imposed by
a local government may limit the flexibility of a software vendor. To the con-
trary, subsidies granted by the government or a public body may assist starting
software vendors in hiring employees and building their position in the software
supply network they are part of. This software supply network is of influence to
the flexibility of the vendor. A precondition for leveraging from service knowledge
and resources of external partnerships in the software supply network is a trustful
relation between the software vendor and these external partnerships. Such a re-
lation is required for sharing service knowledge (e.g. usage and feedback data). So
while a software vendor may be part of a very large and extensive software supply
network, if the relations with external partners in the network are mistrustful, the
software vendor may be less flexible than a software vendor located in a small soft-
ware supply network that has a few trustful external relationships. Ultimately, the
relation of a software vendor with other participants in the software supply network
(both business to consumer as business to business) is such that all participants are
ready to share software (usage) knowledge, on a regular basis, and to each related
participant (partner).

Time To Market Release times of a software vendor (and the response times of the
vendor in general) influence the flexibility of the software vendor. Especially in the
frequently changing markets in which software vendors operate nowadays, a short
time to market contributes to a high software vendor flexibility and responsiveness.
For example, a software vendor that has a short TTM is able to incorporate unfore-
seen requirements — caused by changes in customer and market demands — during
the process of software development relatively easy, without completely disrupting
a project (which, in turn, contributes to the flexibility and responsiveness of the
vendor). Contrarily, a software vendor with a long time to market executes long-
term and complex projects, is less able to incorporate unforeseen changes in these
projects and is therefore limited in its flexibility and responsiveness to changes in
customer and market demands.

Having detailed the factors that determine the SKU level and flexibility of a software vendor,
a software vendor’s ability to respond to changes in market and customer demands can be seen
as a combination of both the SKU level and flexibility of a software vendor. In other words, a
software vendor developing service-based software is responsive when it has a high SKU level (the
software vendor has implemented means to gather and share service knowledge) and a high level
of flexibility (the software vendor leverages from, or is not significantly limited by environmental
factors or local regulations). The definition of responsiveness in the context of this thesis research
was already given in section 3.4.2.

Based on the factors described above, four SKU types can be defined. See figure 3.7.

SKU: Service Knowledge Utilization 53

3.8 SKU Characterization

Low

Static Dynamic

No
implementation

Fully
implemented

Flexibility

SK
U

Le
ve

l

Low High

High

Adaptive

ImpulsiveUnwieldy

Sensitive

Not responsive

Highly responsive

Figure 3.7: SKU characterization model

54 SKU: Service Knowledge Utilization

SKU Characterization 3.8

Unwieldy Unwieldy software vendors are practically unable to respond to changes in customer
and market demands, for example because of imposed regulations or a lack of resources
that limit the software vendor in its flexibility. Unwieldy software vendors have no realized
means for gathering (let alone sharing) service usage and feedback knowledge, and the role
of this knowledge within the organization is of low importance. Hence, the SKU level of this
type of software vendors is low. Software vendors classified as ‘unwieldy’ might operate in
a network of enterprises and have a number of (trustful) important enterprise relations —
but not with respect to service knowledge usage sharing, however. Furthermore, unwieldy
software vendors often execute long-term, complex projects and have a long time to market.
Examples of such vendors are large governmental organizations or institutes (like the software
development department of a tax registration agency, for example).

Impulsive Impulsive software vendors are very responsive to new market trends and customer
demands. The impulsive software vendor mainly depends on, and develops software for
one or two major customers. When one of these major customers presents a set of new
software requirements, the software vendor accepts the new demand relatively easy, after
a short period of negotiations. The software vendor has a high flexibility level because of
the trustful and ‘intimate’ relationships with its external partners (main customers) in the
software supply network it is located in, and because of its short time to market: while
projects may be complex and long-term, the right amount of human resources needed to
complete all projects is determined by the vendor easily, since the software vendor has a
limited number of customers and projects. Since the software vendor has not implemented
a way to log, monitor and extract service usage and feedback knowledge, the vendor does
not have any objective data to support its arguments (for not implementing or changing a
particular feature, or fulfilling a particular demand, for example) or maintain its relation
with external enterprises (B2B) or important customers (B2C). Often, impulsive software
vendors are relatively small companies with ten to fifty employees.

Sensitive While the sensitive software vendor does log the usage and feedback data of its (service-
based) software of a small number of customers — the vendor has a high SKU level — the
vendor is still quite static. In other words, most relations of the vendor with customers
and external partners in the software supply network the vendor is located in, (still) are
quite mistrustful and the time to market of the software vendor (still) is long. The vendor is
ready to fill its usage and feedback database with data from more participants in its software
supply network, extract service knowledge from this database, and to decrease its time to
market by actively deploying this knowledge within its organization. However, the relations
with other participants in the software supply network of the software vendor should be
improved, in order to do so. Sensitive software vendors are finalizing their SKU strategy
and by investing into their external relations, sensitive software vendors should be making
progress in the process of becoming an adaptive software vendor.

Adaptive The adaptive software vendor has successfully implemented a way to log and monitor
the usage and feedback of its (service-based) software. Furthermore, the vendor has imple-
mented infrastructure and processes to successfully utilize the service knowledge extracted
from the service usage and feedback data. For example, the vendor has defined a set of ac-
tions (with corresponding conditions) that are performed when the (usage and/or feedback
data points out that those) conditions are met. Moreover, in order to maintain a dominant
role in its SSN and keep relationships with the external software vendors or customers in
its SSN trustful, the software vendor purposely shares its service knowledge (possibly in the
form of an SKU report) with these partners. Both business relations (both B2B and B2C)
are such, that service usage and feedback data is synchronized with the software vendor
frequently. Finally, the vendor has a relatively short time to market. By utilizing service
knowledge effectively, changes in customer demands are expected and are quickly incorpo-
rated in the vendor’s projects, at an early stage. In short, the adaptive software vendor has a

SKU: Service Knowledge Utilization 55

3.8 SKU Characterization

high level of service knowledge utilization, has a high flexibility level and is therefore highly
responsive to changes in customer and market demands.

While numerous level-based process improvement approaches exist, none provides adequate de-
scriptions or guidelines for improving the process of responding and adapting to changes in cus-
tomer and market demands, based on the usage and feedback of service-based software. For ex-
ample, the Capability Maturity Model Integration for Development (CMMI-DEV) [101] approach
mainly focuses on improving the development processes of product software, while a proposal for a
variant focusing on services [81] does not address the area of service usage and feedback knowledge
— again, in order to improve the process of responding and adapting to changes in customer and
market demands — either.

3.8.3 Identifying the Vendor’s SKU

Based on facts and observations gathered during the case study, this section describes the situation
at Stabiplan B.V., in the context of SKU. The observations are divided over the areas ‘Service
Knowledge’, ‘Organization’ and ‘Communication’, since knowledge about these topics is necessary
in order to determine the responsiveness, service knowledge utilization level and flexibility of a
software vendor (as motivated earlier).

First, the situation at Stabiplan with respect to the concept of service knowledge is described.
Secondly, Stabiplan’s organizational and management structure with respect to its software de-
velopment is explicited. Thirdly, the way the vendor communicates internally (within its organi-
zation) and externally (with the participants of its software supply network) is described. Finally,
the vendor’s current status with respect to service knowledge usage (SKU) is presented.

3.8.3.1 Service Knowledge

The software vendor has no data on the usage of its product and service software. As described
elsewhere in this section, based on the issues reported to the help desk, the software vendor
gets little indication of how frequent the software is used (‘bug is usage’). Furthermore, based
on information of the ‘Orders and Licenses’ department administration, Stabiplan has insight in
which editions, modules and languages are licensed, but not how frequently they are used.

As a result, the software vendor has little to no knowledge concerning the usage of its software
available. While usage information would be welcome to support several meetings and discussions
(‘Should we remove or add this feature? Is it (or will it) still be used?’), the software vendor only
logs the usage of the software on a very basic level: major and severe exceptions are written in a
text file on disk for debugging and support purposes.

Stabiplan has little to no information about how end-users experience and appreciate the software.
Based on support and help desk e-mails, training courses, exhibitions and the oral feedback of
pilot customers, the vendor gets an indication of how its customers and end-users experience and
appreciate its software products and services.

3.8.3.2 Organization

This section describes Stabiplan’s organizational and management structure based on the man-
agement perspectives defined by Brinkkemper and Xu [16] and embedded in the SKU-SSN (fig-
ure 3.4).

56 SKU: Service Knowledge Utilization

SKU Characterization 3.8

Development and Organization Perspective

Three teams within Stabiplan are managing the development and release of the company’s soft-
ware.

• Product Management team

• Release Management team

• Project Managers team

First, the Product Management team consists of two product managers. One is responsible for
national (Dutch) product management, the other focuses on international product management.
While national product management is concerned with the fundamental features of the software,
international product management focuses on language, culture and localization issues. Apart from
the two product managers, the team consists of three key project managers. Product Management
determines the main milestones (Windows Vista support, for example) and intervenes in the case
of a major issue.

Secondly, the Release Management team consists of both product managers, as well as the CEO
and a number of key project managers (other than these in the Product Management team).
The Release Management team maintains a list with major issues and ensure that these issues
are solved before a particular date or milestone. In other words, Release Management assigns
features and issues to future releases. When an implementation deadline is exceeded, the Release
Management team investigates the consequences and provides resolution suggestions.

Thirdly, the Project Managers team consists of the project managers of the various development
teams of Stabiplan. While the project managers mainly communicate via backlogs, the managers
meet regularly to divide issues and discuss implementation problems. These problems may be com-
mon, but may also occur when one development team is dependent on another. This dependency
may occur in the context of database conversions or documentation writing.

Since very little to no software usage or feedback data is available, no recent knowledge based on
this data can be used during the numerous meetings of the management teams.

Business Perspective

Observing figure 1.5, Stabiplan’s management board at the top of the chart (‘Management’)
manages the organization with respect to the business perspective. Stabiplan’s management board
consists of the vendor’s CEO, and sales director. Based on information from lower organization
departments, external partners and major customers, the management makes major, long-term
decisions concerning the future of the organization and its software. Furthermore, the management
board initiates and maintains business relations with several external partners. Again, since very
little to no software usage or feedback data is available, no recent knowledge based on this data
can be used during the numerous meetings of the company management board.

3.8.3.3 Communication

As motivated in previous chapters of this thesis, communication between a software vendor and its
external partners, customers and end-users in its software supply network is of great importance.
This section illustrates the situation at Stabiplan, based on facts gathered during the case study
research.

SKU: Service Knowledge Utilization 57

3.8 SKU Characterization

Internal Communication

The management teams described before (section 3.8.3.2) meet and discuss frequently. Most
decisions are taken after a short discussion. However, discussions concerning the usage of the
software or customer demand and appreciation often take a longer time. Decisions with respect
to these objects are experienced as difficult to take. A main cause of this experience can be
identified: the software vendor does not log or monitor the usage of its software by its customers
and end-users. Therefore, no usage and feedback data (and consequently, less knowledge about
these subjects) is available to serve as an objective source supporting management meetings and
discussions. Especially during interdepartmental meetings, the differences in points of view of
different departments is experienced. For example, a salesman may argue a particular feature has
to be implemented in the next software release because a large customer has requested it, while a
software developer may object because of implementation complexity of this feature, or because of
the implementation priority of other (possibly often-requested) features. This decision difficulty
is also experienced on a more operational level: during their SCRUM meetings, developers and
project leaders frequently discuss about the addition or removal of a particular feature. Because
no recent or updated data concerning software usage and feedback is available, such decisions are
experienced as difficult to take.

External Communication: Business to Business (B2B)

Stabiplan delivers its main software, StabiCAD, to many large external building services enter-
prises. Furthermore, the vendor cooperates with a number of companies. For example, Stabiplan
cooperates with foreign enterprises that distribute the StabiCAD software package to foreign
markets. Furthermore, Stabiplan cooperates with several external software vendors, or software
departments within external organizations, to realize import and export compatibility between
different software packages. Stabiplan has realized export functionality to LISE, a French soft-
ware package that is used in France to acquire building certifications and licenses, for example.
Stabiplan also cooperates with Dutch fire departments, to realize compatibility between Stabi-
CAD drawings and route navigation software used by these departments to localize and identify
buildings on fire. The software vendor has realized several other import and export modules, for
example to provide compatibility with facility management and cost calculation packages.

By means of the CADsymbols.nl website, Stabiplan maintains B2B relations with a large number
of manufacturers of engineering materials (see section 1.5.3). With this website, Stabiplan offers
these manufacturers a platform to publish (symbols of) their materials, while ensuring a steady
(and updated) symbol input flow to its CAD software, making StabiCAD the de facto standard
for draftsmen in the building services industry.

Finally, Stabiplan maintains a tight relationship with PeoplePower, a small company that pro-
vides CAD drawing (management) services. PeoplePower is frequently involved in pilot testing
Stabiplan’s StabiCAD package, and provides Stabiplan with in-the-field test results.

Currently, Stabiplan practically has very little to no knowledge about the performance, usability
or usage of its CADsymbols.nl website or its StabiCAD software: no relevant data is logged.
Consequently, no knowledge about the usage of the website (for example, the number of downloads
of a particular symbol, or within a particular group of symbols) or the CAD software is shared
with the engineering materials manufacturers or other external parters. However, in general, the
relation between Stabiplan and its external partners can be characterized as trustful.

External Communication: Business to Consumer (B2C)

Stabiplan’s customer communication mainly takes place around the departments, events and media
that are listed below.

58 SKU: Service Knowledge Utilization

SKU Characterization 3.8

Support and Help Desk The support and help desk department within Stabiplan is the de-
partment that communicates most with the customers and end-users. When problems occur
while using the software, customers contact this department via a support web site, tele-
phone, mail, or fax. In case of a basic issue, it is handled by the 1st line help desk. Complex
issues are redirected to the 2nd line and in the case of very complex issues, the 3rd line help
desk is contacted.

While this department communicates very frequently with end-users of the software vendor,
and people employed at the department have a clear sense of what are the most frequent
and severe bugs and problems in the software, employees do not know for sure how and how
frequent users use the vendor’s software. Based on the issues reported to the help desk, the
software vendor gets a small indication of how (frequent) the software is used — ‘when an
issue is reported, the software is used’ —, but on the other hand, a customer rarely reporting
bugs may still use the software very intensively and a customer reporting a bug once a week
may still only use a very small part of the functionality the software package offers.

Mailings On a frequent basis, Stabiplan sends its customers a newsletter. This newsletter is
published in two ways: via e-mail and traditional mail. The e-mail newsletter contains
an agenda with upcoming events and exhibitions, and an overview of the most important
events happened since the last e-mail newsletter. The newsletter sent via traditional mail is
a booklet containing all the information in the e-mail newsletter, plus a number of success
stories concerning the usage or purposes of StabiCAD. This form of communication is mainly
one-way, and the vendor is not able to extract valuable information from this communication
process.

Training Courses Stabiplan organizes training courses for both beginning and advanced drafts-
men. While the goal of the starters coursers mainly is to get familiar with the Stabiplan
software, students participating in the advanced courses might provide feedback about their
software usage and experience. If applicable, Stabiplan trainers channel this feedback —
which also may contain a bug report — to the Support and Help desk department.

Exhibitions For Stabiplan, Exhibitions are important events were the company presents itself
to the market it is serving. At the larger exhibitions, new customer relations are founded
and existing relations are strengthened. Furthermore, exhibitions represent points in time
at which new (a version of) software is released. Customers and end-users take notion of, or
request new functionality.

Pilot Customers Pilot customers are invited to test new major versions of the StabiCAD soft-
ware (for example version 8) or newly added functionality. While the communication with
customers during pilot testing is mainly about new features, feedback about old usage situ-
ations might be received.

Summarizing this section, Stabiplan does not actively gather software usage and feedback data.
Consequently, no knowledge based on this data is shared with business partners or customers.

3.8.3.4 Conclusion

Considering the status of SKU at Stabiplan, based on the situation descriptions in this chapter,
a lot can be improved. This is expressed by the characterization model depicted in figure 3.8.
Stabiplan is located at the center bottom of this model. This implies that the vendor is considered
reasonably flexible, but immature in terms of its SKU implementation.

The communication between Stabiplan and its customers is still quite manual and old-fashioned:
to a certain extent, the software vendor is aware of the demand of its customers via its help desk
and pilot customer initiative. Stabiplan evaluates this demand once in a time. The software

SKU: Service Knowledge Utilization 59

3.9 Summary

Low

Static Dynamic

No
implementation

Fully
implemented

Flexibility

SK
U

Le
ve

l

Low High

High

Adaptive

ImpulsiveUnwieldy

Sensitive

Not responsive

Highly responsive

Figure 3.8: Characterization of Stabiplan’s SKU

vendor’s time to market for the new major version of its StabiCAD software (StabiCAD 8) is high
(more than 2,5 years between development initiation and final release), but this is mainly due to
the fact that it is the first new major release of the software. It is expected that because of the
renewed architecture of StabiCAD 8, future major releases will have a much lower time to market.
However, no software usage and feedback data is gathered or analyzed at Stabiplan. While the
role of service knowledge within the organization is considered significant, no service knowledge is
actually deployed or utilized in a structured way. As a result, the vendor is qualified as having a
low service knowledge utilization level.

The relation between Stabiplan and its external partners can be characterized as trustful. Stabi-
plan cooperates with numerous external (foreign) software vendors or departments in order to
realize compatibility between the StabiCAD software and the software of these external vendors.
Furthermore, a small number of Stabiplan’s customers are involved in the process of pilot testing
the vendor’s CAD software and provide Stabiplan with pilot test results. However, Stabiplan is
not yet willing to share usage and feedback knowledge with external partner enterprises (B2B)
or clients (B2C). Therefore, the vendor can be qualified as reasonable flexible. Concluding, the
software vendor can be qualified as moderately responsive to changes in market and customer
demands.

3.9 Summary

This chapter introduces and describes the concept of service knowledge utilization. Except for
the software prototype, this chapter describes all developed design research artifacts. The SKU
concept is introduced based on a comparison of component-based and service-based software, a

60 SKU: Service Knowledge Utilization

Summary 3.9

comparison of the life cycles of both software types, and the concept of C-CCU. This chapter
describes the SKU process model and the SKU in a software supply network model, as well as
the SKU report and the SKU characterization model. As part of the SKU report description,
the construction of the service indices is also detailed in this chapter. Finally, an identification of
the case study software vendor in terms of its service knowledge utilization is presented.

SKU: Service Knowledge Utilization 61

Chapter 4

Nuntia

This chapter is considered confidential. Therefore, this chapter is not published. Please contact
Henk van der Schuur at hwschuur@cs.uu.nl for more information.

Nuntia 63

Chapter 5

Results and Conclusions

This chapter presents conclusions that can be drawn based on research performed. Validation
results of the artifacts developed as part of this thesis research are presented. Furthermore, the
hypotheses formulated in chapter 2 are validated. Finally, the research questions formulated in
the introduction of this thesis are answered.

5.1 Validation Results

Table 2.1 details which research outputs are validated by which research methods. In this section,
the results of the research validation process are described.

5.1.1 SKU Characterization Model

Experts were asked to give their opinion about the SKU characterization model. Specifically, they
were asked to confirm both axes (SKU Level and Flexibility) that potentially contribute to the
diagonal axis (Responsiveness). Both product and project managers considered the flexibility of
a software vendor tightly related to the responsiveness of a vendor. When a software vendor is
flexible towards changes in customer and market demands or software performance and usage, for
example by fixing unexpected bugs quickly, a vendor is able to (re)act quickly and can therefore
be considered responsive, they reasoned.

Experts also confirmed that the SKU Level of a software vendor is of influence to a vendor’s
responsiveness. Lead developers and project managers consider a mature SKU implementation
as a way to make informed decisions, for example concerning human resource management (based
on service usage and feedback knowledge, dedicate employees to the software modules that need
most attention) or software maintenance (set bug fix priority based on service knowledge, number
of end-users a bug occurs). However, experts indicated that their organization would have to
invest into implementation of a SKU process before being able to benefit from a responsiveness
increase, which requires some form of change management: people will have to get used to involve
the knowledge contained in the report in their daily work, for example.

5.1.2 Software Prototype

While the software usage data gathered may be of great value to a software vendor and its partners,
SKU tools (like the Nuntia prototype) should not be integrated with target software at any price.
The usage tracing and the receiving, gathering and storing of usage data uses resources in the

Results and Conclusions 65

5.1 Validation Results

form of CPU time and storage space. Even though the performance loss caused by the Nuntia
prototype was considered negligible, particularly the usage of CPU time by software usage data
gathering software is notable by the end-user: the target service may be experienced as ‘unusually
slow’.

Section ?? details the setup and results of the performance testing that was done to validate the
usability of the prototype once implemented in target software. The results of the performance
test sessions are in line with the opinion of experts that were asked to validate the prototype:
while all experts recognized that the integration of the prototype with the target software entails
some performance loss and that the tracing effects during heavy usage are unknown, they consider
the performance effects as negligible. Furthermore, both product and project managers expect
Nuntia to be integrated with the vendor’s software.

However, two project managers indicated that Nuntia will not improve the vendor’s responsiveness
on its own: the vendor will have to implement a process to take action based on the gathered
knowledge (fix bugs revealed by exception data in the SKU report, for example) and assign
employees to this process, also to prevent a ‘software usage data flood’ towards the organization.

This observation is recognized and acknowledged: as described in chapter 6, future research in-
cludes work on the integration of the service knowledge utilization process into a software vendor’s
existing infrastructure and processes.

5.1.3 SKU Report

Overall, the experts indicated that the report contains data that is valuable to software vendors
and that the report supports informed decision making in the areas of software development and
software maintenance.

Concerning the report’s service indices, experts indicated all service indices should be included in
the SKU report. In their opinion, especially the service client utilization index was considered
a valuable indication. This is in line with earlier interviews and observations: both developers
and project managers indicated that the vendor has difficulties in determining whether or not an
existing feature is still used (and should not be removed yet) or whether a new feature will be
used by their end-users.

Except for throughput, availability and reputation metrics, experts agreed that all metrics pro-
posed should be included in the report. They denoted that the throughput and availability metrics
particularly are of importance with respect to process-centric services. Unlike the vendor’s service
software (which can be characterized as a public enterprise service), process-centric services have
to meet a specific demand, and therefore guarantee a particular level of throughput or availability.

Project and product managers also indicated that only proper and serious feedback will be useful.
Therefore, they proposed to include the reputation metric primarily with pilot customer tests.
Furthermore, the availability metric was considered as less useful because the low availability
score may not be caused by the vendor’s software and may not be the responsibility of the software
vendor, the experts reasoned.

The events overview in the report was considered optional and only valuable for debugging pur-
poses. It was suggested to calculate the metrics on more levels of detail and to base the report
structure on the structure of the target software.

While the data contained in the report was expected to be taken into account when taking decisions
related to operational, tactical and strategical management, product managers indicated that
the SKU report will be primarily used in tactical management meetings (release management
meetings, for example) and added that the report will have to be summarized in order to be of
use in strategical meetings. The report will be generated once a month.

66 Results and Conclusions

Conclusions 5.3

5.1.4 Hypotheses

The case study validation results show that Nuntia is expected to contribute to a software vendor’s
responsiveness to service performance and usage changes. The vendor has decided to integrate
Nuntia with its live software in the near future because of the negligible performance loss this
integration entails and because of the valuable information that is provided by the SKU report.

The SKU implementation is expected to contribute to a software quality increase on the short
term and a time-to-market decrease on the long term: the vendor noted that it will first have to
invest into the process of acting upon the knowledge, before it is able to improve its responsiveness
based on the gathered knowledge. The vendor expects to base requirements elicitation and bug
fix priority assignment on the SKU reports generated by Nuntia, and be able to react before an
end-user calls for support.

Finally, Nuntia’s architecture (loosely-coupled services, use of the aspect-oriented programming
technique) enables easy integration with target software. Since Stabiplan did not actively gather
knowledge about its software, and the SKU prototype was successfully integrated with the vendor’s
service software, Stabiplan indicates that its SKU level has increased. Moreover, the vendor
denoted that the prototype contributed to this SKU level increase.

Hence, we consider the hypotheses confirmed on the long run.

5.2 Conclusions

This thesis research shows that the concept of service knowledge utilization is an approach that
potentially improves the responsiveness of software vendors. By using this approach, vendors can
make informed decisions with respect to their software requirements management and software
maintenance processes. Service usage and feedback data that is considered valuable and useful by
software vendors, can be gathered real-time using aspect-oriented programming techniques. It is
demonstrated that service performance, usability and usage can be expressed by a set of quality of
service metrics, of which the values are based on gathered service usage and feedback data. This
data can be visualized and summarized in a report that supports a software vendor’s management
teams in extracting software knowledge and making informed decisions.

Even though both the SKU concept and SKU report are considered useful and the case study
results are promising, it can be concluded that gathering software knowledge will not improve the
vendor’s responsiveness on its own: a software vendor will have to integrate the SKU process into
its existing processes and infrastructure. Furthermore, some form of change management will be
required: employees will have to get used to involve the gathered software knowledge in their daily
work.

5.3 Answers to Research Questions

This section answers the research questions that were formulated in the introduction of this thesis.

RQ How can Continuous Customer Configuration Updating be applied to service-based software
and Web services?

The answer to this question is the concept of service knowledge utilization (SKU). While C-
CCU is developed for component-based software — the processes defined in the C-CCU model
closely match those of the component-based software life cycle — SKU is applied to service-based
software. The concept of SKU is constructed by comparing the life cycles of both software types
and has the same goal as the C-CCU model: to increase the responsiveness of a software vendor.

Results and Conclusions 67

5.4 Discussion

SQ1 What are differences and similarities between software components and services with respect
to C-CCU?

This question is mainly answered by sections 3.1 and 3.2. In the former section, the definitions of
both concepts developed by research are compared. Furthermore, both components and services
are compared by a number of criteria. The latter section details a comparison with respect to
C-CCU and the phases defined in the C-CCU model: in this section, the life cycles of both
component- and service-based software are compared.

SQ2 What are measurable critical success factors of C-CCU applied to service-based software and
Web services?

The answer to this question is the SKU characterization model presented in section 3.8.2. This
model expresses a software vendor’s responsiveness in terms of its flexibility (horizontal axis)
and service knowledge utilization level (vertical axis). In this thesis research, two factors that
determine the location of a software vendor on an axis have been defined for both axes. The
critical success factors of the flexibility axis are a vendor’s software supply network and its time
to market. For the SKU level axis, these factors are service knowledge gathering and service
knowledge significance. Because the factors determine a software vendor’s location on both axes
and consequently determine the responsiveness of a vendor, the factors can be seen as critical
success factors of the SKU concept (C-CCU applied to service-based software). The factors are
validated by means of the case study performed during the thesis research.

SQ3 When is C-CCU, applied to service-based software and Web services, implemented success-
fully?

The answer to SQ3 is also contained in the SKU characterization model. In section 3.8.2, four
software vendor types are defined in terms of their flexibility, SKU level (and consequently, respon-
siveness): the unwieldy, impulsive, sensitive and adaptive software vendor. The adaptive software
vendor can be seen as a software vendor that has implemented the concept of service knowledge
utilization (C-CCU for service-based software) successfully.

5.4 Discussion

This thesis research started as an initiative to apply Jansen’s C-CCU model to service-based
software and web services. While the research questions formulated in this thesis are satisfactory
answered and the thesis research results are promising, remarks can be made.

First, a case study was performed in order to validate outputs of this thesis research as part
of the design research evaluation phase. Specifically, interviews, expert validation and testing
research methods were utilized to gather and validate evidence. On the one hand, the case study
is a suitable method to gather evidence from the field: real people are interviewed and updated
information is gathered, an actual and realistic image of a company can be formed. On the other
hand, one should prevent that too specific and characteristic evidence is gathered, in order to
apply research results to comparable companies. This could be done by interviewing experts or
gathering documentation from various companies, for example.

Concerning this research, results can be generalized to similar-sized software vendors easily, even
though a limited number of experts was interviewed. While more effort will have to be done
with respect to process integration and alteration, the concept of SKU may well be of even
more importance within larger software vendors. Furthermore, the Nuntia SKU prototype is
developed with generic concepts, techniques, goals and parties in mind, and can be implemented

68 Results and Conclusions

Positioning of Research Contribution 5.5

at another software vendor without difficulty. Finally, the structure of the SKU report is such
that it can be extended effortlessly. For example, newly defined event types and properties, as well
as environment information log structures, are automatically included in the SKU report when
the report is generated. With respect to future research, more experts will be interviewed and
evidence from different software vendors will be gathered.

Secondly, even though both the SKU report as the information it contains are considered useful,
the service usability index could be further developed. As described in chapter 3, a lot of work
has been done in the usability research area. Therefore, the service usability index could be
composed of more typical usability metrics. With respect to service quality and performance,
most important metrics are taken into account, as visualized by table 5.1. Concluding, concerning
software development and software maintenance, relevant service indices are included in the SKU
report. Service indices that represent other aspects of service behavior could also be included. For
example, a ‘Service Customer Contact Index’ could be constructed of metrics that represent the
time a software vendor spends on a certain customer. With respect to the events overview that
is contained in the SKU report, one should recognize that the quality of the feedback provided
influences the quality and usefulness of the overview and the data contained in it. Moreover, since
a software developer or software tester probably will provide feedback of a different, more technical
type than an end-user of the software, feedback could be categorized in feedback source types. By
doing so, feedback of a particular type can be directed to or included in a particular enterprise
department, business process or management team.

Thirdly, remarks can be made with respect to the SKU characterization model. While the model
is not designed to identify quantifiable SKU maturity levels, the factors that determine a software
vendor’s SKU type could be described more elaborate and could be validated more thoroughly,
in order to justify a vendor’s (shift in) SKU type.

Fourthly, as indicated by the experts interviewed and reflected by the SKU characterization model,
the success of the research outputs and an SKU implementation in general depends on to which
extent a software vendor is prepared to implement and apply these outputs, as well as the gathered
service knowledge, in and to its existing infrastructure and processes. For a software vendor, the
greatest challenge will not be in the technology area, but in integrating the SKU concept and
all its artifacts into the business processes and infrastructure that are already in place and where
people are familiarized with. Future research will be done to address possible integration issues
(see chapter 6).

This thesis research opened a relatively new research area. In its broadest form, this research area
can be identified as research on the concept of ‘software knowledge utilization’. The main question
of this research area can be defined as ‘How can software knowledge be successfully utilized in the
life cycle phases of all types of software?’ As described in chapter 6, future research will focus on
this area.

5.5 Positioning of Research Contribution

This section positions this thesis research contribution in the field of related research. The thesis
is positioned for each of the research areas it contributes to: QoS metrics, service management
and usage monitoring and aspect oriented programming.

5.5.1 Quality of Service Metrics

In research, QoS metrics are often used or created [62] in the process of web service discovery [90],
selection [117] or composition [119]. Furthermore, research is done specifically on the integration
of QoS management in service-oriented enterprise architectures [109].

Results and Conclusions 69

5.5 Positioning of Research Contribution

Table 5.1 lists research articles on quality of service metrics and compares them in terms of these
metrics. The table visualizes how frequent certain quality of service metrics are used in related
research. Comparing related research to this thesis research, two important observations can be
made. First, related research frequently includes a ‘Cost’ (or comparable) metric in the set of
quality of service metrics. As a consequence, the quality of a service often is inter alia composed
of the purchase and usage cost of a service. Since the main service purchase and usage costs are
paid by enterprises and end-users which purchase and use the service software, and since this thesis
research is done from a software vendor’s point of view, a cost metric is not taken into account in
this research. Secondly, as represented by table 5.1, little research is done on the inclusion of a
‘Usability’ (or comparable) metric as a part of the quality of a service. Contrarily, web usability
is evaluated in typical usability research like [112]. Since the case study software vendor of this
thesis research develops and maintains service-based software that is controlled by end-users via
an user interface, a usability metric is included in the set of service metrics.

While many research initiatives focus on the application of QoS metrics in the processes that take
place before the management phase of the service-based software life cycle (see figure 3.3), this
thesis research utilizes QoS metrics in the two last phases of this life cycle, management and usage,
focusing on the application of metrics as a means to achieve software quality goals and increase
the responsiveness of software vendors to performance and usage changes in their software.

5.5.2 Service Management and Usage Monitoring

Huang et al. [52] propose a service management framework, specifically for service-oriented enter-
prises. While their work is based on a model-driven approach and is designed for service-oriented
enterprises, the research and solutions presented in this thesis can also be applied in non-service-
oriented enterprises.

Since Microsoft implemented its error reporting mechanism in Windows and discovered that 1%
of the bugs caused 50% of all errors [15], a lot of research has been done on this topic. Farrell
and Kreger [38] propose types of information that can be collected with respect to web service
management, and indicate that this information could serve as a basis for service usage monitoring.
However, the solutions the authors provide do not feature any form of (summarizing) report
functionality similar to the SKU report presented in this paper. Lazovik et al. [69] propose a
framework for planning and monitoring the execution of web service requests against standardized
business processes. This planning framework specifically monitors the execution of planned goals
against predefined standard business processes and interacts with an end-user to achieve goal
satisfaction, while the solution presented in this thesis monitors (traces) services in a broader
scope (on performance, usage and feedback criteria) to achieve software quality goals and increase
the responsiveness of software vendors to performance and usage changes in their software.

5.5.3 Aspect-Oriented Programming

Since a lot of cross-cutting concerns exist, research on the subject of aspect-oriented programming
is done on various areas. Altisen et al. [4] apply the notion of cross-cutting concerns to reactive
systems. Tsang et al. [102] utilize AOP to encapsulate real-time cross-cutting concerns such
as memory management and thread scheduling. Bruntink [18] investigated the renovation of
idiomatic cross-cutting concerns in the embedded control software of ASML’s wafer scanners using
AOP. Papapetrou and Papadopoulos [84] have researched the more conventional application of
aspect-oriented programming: they performed a case study in which an AOP-based logging tool
was applied to real-life component-based software. While their application of aspect-oriented
programming is similar, our solution is also utilized with service-based software and environments.

Research has also been done with respect to the monitoring, logging and tracing of Web services
by using aspect-oriented programming. Bhatti et al. [8] study the execution behavior for various

70 Results and Conclusions

Positioning of Research Contribution 5.5

service classes with a formal model they developed for simulating and studying response time of
‘aspectized’ Web services. While their research is limited to service performance measuring (the
execution time of Web service classes is measured), our research also studies the usability of and
feedback on Web services.

Results and Conclusions 71

5.5 Positioning of Research Contribution

L
it

er
at

u
re

M
et

ri
ca

R
el

ia
bi

lit
y

T
hr

ou
gh

pu
t

L
at

en
cy

A
cc

ur
ac

y
A

va
ila

bi
lit

y
U

sa
bi

lit
y

R
ep

ut
at

io
n

C
os

t
R

an
[9

0]
:

A
M

od
el

fo
r

W
eb

Se
rv

ic
es

D
is

co
ve

ry
W

it
h

Q
oS

+
+

+
+

+
+

Y
u

et
al

.
[1

18
]:

E
ffi

ci
en

t
al

go
ri

th
m

s
fo

r
W

eb
se

rv
ic

es
se

le
ct

io
n

w
it

h
en

d-
to

-e
nd

Q
oS

co
n-

st
ra

in
ts

+
b

+
+

c

B
oc

hm
an

n
et

al
.

[1
08

]:
In

tr
od

uc
in

g
Q

oS
to

E
le

ct
ro

ni
c

C
om

m
er

ce
A

pp
lic

at
io

ns
+

+
d

+

va
n

M
oo

rs
el

[1
06

]:
M

et
ri

cs
fo

r
th

e
In

te
rn

et
A

ge
:

Q
ua

lit
y

of
E

xp
er

ie
nc

e
an

d
Q

ua
lit

y
of

B
us

in
es

s
+

+
+

c
+

e
+

+
f

+

Z
en

g
et

al
.

[1
19

]:
Q

ua
lit

y
D

ri
ve

n
W

eb
Se

rv
ic

es
C

om
po

si
ti

on
+

+
g

+
+

+
h

Y
u

an
d

L
in

[1
17

]:
Se

rv
ic

e
se

le
ct

io
n

al
go

ri
th

m
s

fo
r

W
eb

se
rv

ic
es

w
it

h
en

d-
to

-e
nd

Q
oS

co
n-

st
ra

in
ts

+
+

c
+

+

M
an

ia
nd

N
ag

ar
aj

an
[7

3]
:

U
nd

er
st

an
di

ng
qu

al
-

it
y

of
se

rv
ic

e
fo

r
W

eb
se

rv
ic

es
+

+
i

+
h

+
j

+

K
al

ep
u

et
al

.
[6

2]
:

V
er

it
y:

A
Q

oS
M

et
ri

c
fo

r
Se

le
ct

in
g

W
eb

Se
rv

ic
es

an
d

P
ro

vi
de

rs
+

+
+

+
+

+
+

g

a
U

n
d

er
li
n

ed
m

et
ri

cs
a
re

p
a
rt

o
f

o
n

e
o
r

m
o
re

se
rv

ic
e

in
d

ex
co

m
p

o
si

ti
o
n

s
o
f

th
is

th
es

is
re

se
a
rc

h
(s

ee
ch

a
p

te
r

3
).

b
R

ef
er

re
d

to
a
s

‘E
x
ec

u
ti

o
n

ti
m

e’
.

c
O

n
ly

th
e

in
it

ia
l

co
st

o
f

a
se

rv
ic

e
(p

ri
ce

)
is

ta
k
en

in
to

a
cc

o
u

n
t.

d
R

ef
er

re
d

to
a
s

‘R
es

p
o
n

se
ti

m
e’

.
e

R
ef

er
re

d
to

a
s

‘E
rr

o
r

ra
te

’.
f

R
ef

er
re

d
to

a
s

‘Q
u

a
li
ty

o
f

E
x
p

er
ie

n
ce

’.
g

R
ef

er
re

d
to

a
s

‘E
x
ec

u
ti

o
n

d
u

ra
ti

o
n

’.
h

R
ef

er
re

d
to

a
s

‘P
ri

ce
’.

i
C

o
n
ta

in
ed

in
th

e
m

et
ri

c
‘P

er
fo

rm
a
n

ce
’.

j
R

ef
er

re
d

to
a
s

‘I
n
te

g
ri

ty
’.

T
a
b
le

5
.1

:
Q

u
a

li
ty

o
f

S
er

vi
ce

m
et

ri
cs

in
re

la
te

d
li

te
ra

tu
re

72 Results and Conclusions

Chapter 6

Future Research

While the results of this research are promising, further research is needed in various areas. This
chapter describes future research in each of these areas.

6.1 Integration

Research has to be done to more tightly integrate the process of service knowledge utilization
into a software vendor’s existing infrastructure and processes. For example, exceptions of which a
vendor knows they really should not occur, could be automatically sent to the vendor’s help desk
support system or development bug database. Within this context, a structured mechanism with
which actions can be defined that are performed based on usage and feedback data, should be
developed. These actions could be defined in the form of expressions which could be expressed in a
structured language like XML. To accomplish this tight SKU integration within an organization, a
SKU business process alteration or integration method could be defined that is based on survey or
expert interview results. Furthermore, tools that orchestrate this integration and business process
alteration could be developed.

6.2 Scalability

The areas of data mining techniques and software tomography [12] have to be researched. Data
mining [47] is required to extract sophisticated statistics, whereas software tomography keeps
performance loss of the target software caused by the process of software usage and feedback data
gathering negligible under heavy use circumstances. Future research should also focus on the data
mining of large service knowledge repositories to ensure scalability of the SKU implementation.
Structurally increased scalability could be accomplished by an extensive literature study in the
area of data mining and software tomography.

6.3 Reporting

While the SKU report generation functionality implemented in the software prototype developed
during this thesis research is validated by the case study company and is mature enough to sup-
port decision making processes of a software vendor, reporting can be improved. For example, the
report may be generated on several levels of detail and complexity, depending on the application

Future Research 73

of the report and configurable by the software vendor. Furthermore, new service indices (and cor-
responding metrics) may be included in the SKU report. Finally, the report could more resemble
the architecture of the software it is generated for. This could be realized by performing a liter-
ature study on automated software structure and architecture analysis and implement techniques
used in these areas in the SKU report generation tool.

6.4 Development Assistance

Data from the usage and feedback database can be visualized to developers and software maintain-
ers in a more comprehensive and effective way. This data can be used to visualize heavily-used,
critical code, for example. Software developers could be presented with a visualization of code that
enables a developer to understand how a piece of code behaves in practice. The visualization must
be insightful, yet lay a small claim on the already scarce screen estate of a software developer.
Furthermore, the context of the code must be visualized as well, to disambiguate the multiple uses
a code fragment has. In this respect, research has to be done in feedback visualization techniques
and software maintenance process alteration. A code visualization plugin that provides only the
information that developers find useful in specific situations can be developed. Because devel-
opers or project managers may resist changes in software development or software maintenance
processes, they have to be convinced of the value that a feedback data visualization plug-in may
bring to a software vendor’s integrated development environment1.

6.5 Characterization

More research may be done on the area of SKU characterization. As mentioned in chapter 3, the
SKU characterization model that is part of this research can be used to identify and recognize
software vendors in terms of their service knowledge utilization. However, only few factors that
identify a software vendor in terms of SKU and determine a vendor’s SKU type have been defined,
and new factors may be researched. The agility (‘agile-ness’) of the software development process
of a software vendor might be a new factor, for example. Furthermore, research has to be done on
both quantifiability and measurability of the factors already defined, as well as potential additional
factors. Both aspects could be established by conducting a survey among software vendor’s CEOs
and projects managers.

1 This persuasion is part of the business process alteration described in section 6.1.

74 Future Research

Bibliography

[1] Russell Ackoff. From data to wisdom. Journal of Applied Systems Analysis, 16:3–9, 1989.

[2] Paul Allen and Stuart Frost. Component-based development for enterprise systems: applying
the SELECT perspective. Cambridge University Press, New York, NY, USA, 1998.

[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services: Concepts,
Architecture and Applications. Springer Verlag, 2004.

[4] K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented programming for reactive sys-
tems: Larissa, a proposal in the synchronous framework. Science of Computer Programming,
63(3):297–320, 2006.

[5] Nate Anderson. Tim Berners-Lee on Web 2.0: “Nobody even knows what it means”. http://
arstechnica.com/news.ars/post/20060901-7650.html. Ars Technica, LLC, September
2006.

[6] Autodesk, Inc. http://www.autodesk.com.

[7] Carol M. Barnum. Usability Testing and Research. Allyn & Bacon, Inc., Needham Heights,
MA, USA, 2001.

[8] Muhammad Usman Bhatti, Samir Youcef, Lynda Mokdad, and Valrie Monfort. Execution
Time Analysis of Aspectized Web Services. In Second International Conference on Internet
and Web Applications and Services, page 30. IEEE Computer Society, 2007.

[9] Barry Boehm. Get Ready for Agile Methods, with Care. IEEE Computer, 35(1):64–69,
2002.

[10] Grady Booch. Object-Oriented Analysis and Design with Applications (3rd Edition). Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[11] David Booth, Hugo Haas, et al. Web Services Architecture. http://www.w3.org/TR/
ws-arch/#whatis. Web Services Architecture Working Group, World Wide Web Consor-
tium.

[12] Jim Bowring, Alessandro Orso, and Mary Jean Harrold. Monitoring Deployed Software
Using Software Tomography. SIGSOFT Software Engineering Notes, 28(1):2–9, 2003.

[13] Tim Bray, Jean Paoli, et al. Extensible Markup Language (XML) 1.1 (Second Edition) -
Origin and Goals. http://www.w3.org/TR/xml11/#sec-origin-goals. World Wide Web
Consortium.

[14] Tim Bray, Jean Paoli, et al. Extensible Markup Language (XML) 1.1 (Second Edition).
http://www.w3.org/TR/xml11. World Wide Web Consortium.

[15] Harry Brelsford, Michael S. Toot, Karishma Kiri, and Robin Van Steenburgh. Connecting
to Customers. Microsoft Press, Redmond, Washington, February 2002.

Bibliography 75

http://arstechnica.com/news.ars/post/20060901-7650.html
http://arstechnica.com/news.ars/post/20060901-7650.html
http://www.autodesk.com
http://www.w3.org/TR/ws-arch/#whatis
http://www.w3.org/TR/ws-arch/#whatis
http://www.w3.org/TR/xml11/#sec-origin-goals
http://www.w3.org/TR/xml11

[16] Sjaak Brinkkemper and Lai Xu. Concepts of product software: Paving the Road for Urgently
Needed Research. European Journal of Information Systems, 16(5):531–541, 2007.

[17] John Seely Brown, Scott Durchslag, and John Hagel. Loosening up: How process net-
works unlock the power of specialization. The McKinsey Quarterly: Risk and Resilience, 2,
September 2002.

[18] Magiel Bruntink. Renovation of Idiomatic Crosscutting Concerns in Embedded Systems.
PhD thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, March
2008.

[19] Steve Burbeck. The Tao of e-business services. http://www.ibm.com/developerworks/
webservices/library/ws-tao/. Emerging Technologies, IBM Software Group, 2000.

[20] L.F. Capretz. Y: A New Component-Based Software Life Cycle Model. Journal of Computer
Science, 1(1):76–82, January 2005.

[21] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. XML: Current Developments and
Future Challenges for the Database Community. In EDBT ’00: Proceedings of the 7th
International Conference on Extending Database Technology, pages 3–17, London, UK, 2000.
Springer-Verlag.

[22] Roberto Chinnici, Jean-Jacques Moreau, et al. Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language. http://www.w3.org/TR/wsdl20/. World Wide Web
Consortium.

[23] Vidyanand Choudhary. Software as a Service: Implications for Investment in Software De-
velopment. In HICSS ’07: Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, page 209a, Washington, DC, USA, 2007. IEEE Computer Society.

[24] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI Version 3.0.2
— UDDI Spec Technical Committee Draft. http://uddi.org/pubs/uddi_v3.htm. OASIS
Consortium.

[25] Harlan Cleveland. Information As a Resource. The Futurist, 16:34–49, December 1982.

[26] Component. http://dictionary.reference.com/browse/component. Dictionary.com
Unabridged (v 1.1), Random House, Inc.

[27] Software component. http://en.wikipedia.org/wiki/Software_component. Wikipedia.

[28] Aaron Crane. Does XML Suck? Or: Why XML is Technologically Terrible, but
You Have to Use It Anyway. http://xmlsucks.org/but_you_have_to_use_it_anyway/
does-xml-suck.html. GBdirect Ltd.

[29] Michael C. Daconta, Kevin T. Smith, and Leo J. Obrst. The Semantic Web: A Guide to
the Future of XML, Web Services, and Knowledge Management. John Wiley & Sons, Inc.,
New York, NY, USA, 2003.

[30] A. M. Davis, H. Bersoff, and E. R. Comer. A Strategy for Comparing Alternative Software
Development Life Cycle Models. IEEE Transactions on Software Engineering, 14(10):1453–
1461, 1988.

[31] Alan M. Davis and Edward H. Bersoff. Impacts of life cycle models on software configuration
management. Communications of the ACM, 34(8):104–118, 1991.

[32] John Dawes. Do Data Characteristics Change According to the number of scale points used?
An experiment using 5-point, 7-point and 10-point scales. International Journal of Market
Research, 50(1):61–77.

76 Bibliography

http://www.ibm.com/developerworks/webservices/library/ws-tao/
http://www.ibm.com/developerworks/webservices/library/ws-tao/
http://www.w3.org/TR/wsdl20/
http://uddi.org/pubs/uddi_v3.htm
http://dictionary.reference.com/browse/component
http://en.wikipedia.org/wiki/Software_component
http://xmlsucks.org/but_you_have_to_use_it_anyway/does-xml-suck.html
http://xmlsucks.org/but_you_have_to_use_it_anyway/does-xml-suck.html

[33] Joseph S. Dumas and Janice C. Redish. A Practical Guide to Usability Testing. Intellect
Ltd., October 1999.

[34] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, P̊al Krogdahl, Min
Luo, and Tony Newling. Patterns: Service-Oriented Architecture and Web Services. IBM
Redbooks, July 2004.

[35] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[36] Theodoros Evgeniou. Information Integration and Information Strategies for Adaptive En-
terprises. European Management Journal, 20(5):486–494, 2002.

[37] Amalina Farhi Ahmad Fadzlah and Aziz Deraman. Measuring the Usability of Software
Applications: Metrics for Behaviorness. pages 448–454, 2007.

[38] J.A. Farrell and H. Kreger. Web services management approaches. IBM Systems Journal,
41(2), 2002.

[39] Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani. Perspectives on
Free and Open Source Software. The MIT Press, 2005.

[40] Fielding et al. Hypertext Transfer Protocol — HTTP/1.1. Network Working Group, 1999.
Request For Comments (RFC) 2616.

[41] International Organization for Standardization. ISO 8879:1986: Information processing —
Text and office systems — Standard Generalized Markup Language (SGML). International
Organization for Standardization, Geneva, Switzerland, August 1986.

[42] International Organization for Standardization. ISO/IEC 12207:1995: Information technol-
ogy — software life cycle processes. 1995. Geneva, Switzerland.

[43] International Organization for Standardization. ISO 92411-11:1998(E): Ergonomic require-
ments for office work with visual display terminals (VDTs) – Part 11: Guidance on usability.
March 1998. Geneva, Switzerland.

[44] Google Inc. http://www.google.com.

[45] Martin Gudgin, Marc Hadley, et al. SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition). http://www.w3.org/TR/soap12-part1/. World Wide Web Consortium.

[46] Remo Häcki and Julian Lighton. The future of the networked company. The McKinsey
Quarterly, (3):26–39, 2001.

[47] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques, 2nd edition
— The Morgan Kaufmann series in data management systems. Kaufman, San Francisco,
California, 2006.

[48] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1):75–106, 2004.

[49] David M. Hilbert and David F. Redmiles. Extracting Usability Information from User
Interface Events. ACM Computing Surveys, 32(4):384–421, 2000.

[50] Lorin Hitt and Prasanna Tambe. Broadband adoption and content consumption. Informa-
tion Economics and Policy, 19:362–378, October 2007.

[51] Gregor Hohpe. Web Services: Pathway to a Service-Oriented Architecture? ThoughtWorks,
2002.

Bibliography 77

http://www.google.com
http://www.w3.org/TR/soap12-part1/

[52] Ying Huang, Santhosh Kumaran, and Jen-Yao Chung. A Service Management Framework
for Service-Oriented Enterprises. In Proceedings of the IEEE International Conference on
E-Commerce Technology, pages 181–186, Los Alamitos, CA, USA, 2004. IEEE Computer
Society.

[53] Mamdouh H. Ibrhaim, Kerrie Holley, Nicolai M. Josuttis, Brenda Michelson, Dave Thomas,
and John deVadoss. The future of SOA: what worked, what didn’t, and where is it going
from here? In OOPSLA ’07: Companion to the 22nd ACM SIGPLAN conference on Object
oriented programming systems and applications companion, pages 1034–1038, New York,
NY, USA, 2007. ACM.

[54] IntelliCAD Technology Consortium. http://www.intellicad.org/.

[55] Ivar Jacobson. Object Oriented Development in an Industrial Environment. SIGPLAN Not.,
22(12):183–191, 1987.

[56] Slinger Jansen. Customer Configuration Updating in a Software Supply Network. PhD thesis,
Universiteit Utrecht, October 2007.

[57] Slinger Jansen and Sjaak Brinkkemper. Definition and Validation of the Key Process Areas
of Release, Delivery and Deployment of Product Software Vendors: turning the ugly duck-
ling into a swan. In proceedings of the International Conference on Software Maintenance
(ICSM2006, Research track), September 2006.

[58] Slinger Jansen and Sjaak Brinkkemper. Pheme: A Communication Infrastructure for Prod-
uct Software Knowledge. In ICSM 2007: Proceedings of the IEEE International Conference
on Software Maintenance 2007, pages 527–528, October 2007.

[59] Slinger Jansen and Sjaak Brinkkemper. Rapport Nationaal Benchmarkonderzoek Produc-
tuitlevering 2007. 2007.

[60] Slinger Jansen, Sjaak Brinkkemper, and Tijs van der Storm. Living on the Cutting Edge:
Automating Continuous Customer Configuration Updating. In Proceedings of the Third
International ERCIM Symposium on Software Evolution (Software Evolution 2007), 2007.

[61] Alan Jones. ISO 12207 Software life cycle processes - fit for purpose? Software Quality
Journal, 5:243–253, 1996.

[62] Sravanthi Kalepu, Shonali Krishnaswamy, and Seng Wai Loke. Verity: a QoS metric for
selecting Web services and providers. In Proceedings of the Fourth International Conference
on Web Information Systems Engineering Workshops (WISEW ’03), pages 131–139. IEEE
Computer Society, 2003.

[63] Anish Karmarkar and Mike Edwards. Assembly of Business Systems Using Service Compo-
nent Architecture, volume 4294/2006, pages 529–539. Springer Berlin / Heidelberg, 2006.

[64] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services. Journal of Network and Systems Management,
11(1):57–81, 2003.

[65] Alexander Keller, Heiko Ludwig, Asit Dan, Richard King, and Richard Franck. A Service
Level Agreement Language for Dynamic Electronic Services. 3:43–59.

[66] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[67] Scott Laningham. IBM developerWorks Interviews: Tim Berners-Lee — Orginator
of the Web and director of the W3C talks about where we’ve come, and about the
challenges and opportunities ahead. http://www.ibm.com/developerworks/podcast/dwi/
cm-int082206txt.html. IBM developerWorks podcast interview, August 2006.

78 Bibliography

http://www.intellicad.org/
http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html
http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html

[68] Kung-Kiu Lau and Mario Ornaghi. OOD Frameworks in Component-Based Software -
Development in Computational Logic. In LOPSTR ’98: Proceedings of the 8th International
Workshop on Logic Programming Synthesis and Transformation, pages 101–123, London,
UK, 1990. Springer-Verlag.

[69] Alexander Lazovik, Marco Aiello, and Mike Papazoglou. Planning and monitoring the exe-
cution of web service requests. Int. J. Digit. Libr., 6(3):235–246, 2006.

[70] Lundy Lewis. Managing Business and Service Networks. Kluwer Academic Publishers,
Norwell, MA, USA, 2001.

[71] Xumin Liu and Athman Bouguettaya. Managing Top-down Changes in Service-Oriented
Enterprises. In IEEE International Conference on Web Services (ICWS 2007), pages 1072–
1079, Salt Lake City, UT, USA, July 2007. IEEE Computer Society.

[72] C. Lovelock, S. Vandermerwe, and B. Lewis. Services marketing. Prentice Hall Europe,
1996.

[73] Anbazhagan Mani and Arun Nagarajan. Understanding quality of service for Web services.
http://www.ibm.com/developerworks/java/library/ws-quality.html. IBM developer-
Works, January 2002.

[74] Daniel A. Menascé, Daniel Barbará, and Ronald Dodge. Preserving QoS of E-commerce
Sites Through Self-Tuning: A Performance Model Approach. In EC ’01: Proceedings of the
3rd ACM conference on Electronic Commerce, pages 224–234, New York, NY, USA, 2001.
ACM.

[75] Haim Mendelson and Johannes Ziegler. Survival of the Smartest: Managing Information
for Rapid Action and World-Class Performance. John Wiley & Sons, Inc., New York, NY,
USA, 1999.

[76] Nikola Milanovic. Contract-based Web Service Composition. PhD thesis, Humboldt-
Universität Berlin, June 2006.

[77] Ernest-Jan Mutsaers, Han van der Zee, and Henrik Giertz. The evolution of Information
Technology. Information Management & Computer Security, 6:115–126, 1998.

[78] Felix Naumann, Ulf Leser, and Johann Christoph Freytag. Quality-driven Integration of
Heterogenous Information Systems. In VLDB ’99: Proceedings of the 25th International
Conference on Very Large Data Bases, pages 447–458, San Francisco, CA, USA, 1999. Mor-
gan Kaufmann Publishers Inc.

[79] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services (Independent
Technology Guides). Addison Wesley Professional, 2004.

[80] Jakob Nielsen. Usability Engineering. Academic Press, Boston, MA, USA, 1993.

[81] Frank Niessink, Viktor Clerc, Ton Tijdink, and Hans van Vliet. The IT Service Capability
Maturity Model. Technical report, Department of Computer Science, Faculty of Sciences,
Vrije Universiteit, Amsterdam, The Netherlands, January 2005.

[82] Richard L. Nolan. Managing the computer resource: a stage hypothesis. Commun. ACM,
16(7):399–405, 1973.

[83] Tim O’Reilly. The Open Source Paradigm Shift. http://tim.oreilly.com/articles/
paradigmshift_0504.html. O’Reilly Media, June 2004.

[84] Odysseas Papapetrou and George A. Papadopoulos. Aspect oriented programming for a
component-based real life application: a case study. In SAC ’04: Proceedings of the 2004
ACM symposium on Applied computing, pages 1554–1558, New York, NY, USA, 2004. ACM.

Bibliography 79

http://www.ibm.com/developerworks/java/library/ws-quality.html
http://tim.oreilly.com/articles/paradigmshift_0504.html
http://tim.oreilly.com/articles/paradigmshift_0504.html

[85] M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented computing. Com-
munications of the ACM, 46(10):24–28, October 2003.

[86] Michael P. Papazoglou. Extending the Service-Oriented Architecture. Business Integration
Journal, pages 18–21, February 2005.

[87] Michael P. Papazoglou and Willem-Jan van den Heuvel. Web Services Management: A
Survey. IEEE Internet Computing, 9(6):58–64, 2005.

[88] Wolfgang Pree and Hermann Sikora. Design Patterns for Object-Oriented Software Develop-
ment. In ICSE ’97: Proceedings of the 19th international conference on Software engineering,
pages 663–664, New York, NY, USA, 1997. ACM.

[89] Václav T. Rajlich and Keith H. Bennett. A Staged Model for the Software Life Cycle.
Computer, 33(7):66–71, 2000.

[90] Shuping Ran. A Model for Web Services Discovery With QoS. ACM SIGecom Exchanges,
4(1):1–10, 2003.

[91] Lauge Baungaard Rasmussen and Arne Wangel. Work in the virtual enterprise—creating
identities, building trust, and sharing knowledge. AI & Society, 21:184–199, January 2007.

[92] Susannah Ravden and Graham Johnson. Evaluating usability of human-computer interfaces:
a practical method. Halsted Press, New York, NY, USA, 1989.

[93] Akhil Sahai, Jinsong Ouyang, Vijay Machiraju, and Klaus Wurster. Specifying and Guaran-
teeing Quality of Service for Web Services through Real Time Measurement and Adaptive
Control. http://www.hpl.hp.com/techreports/2001/HPL-2001-134.html. HP Labora-
tories, June 2001.

[94] Burak Sari, Tayyar Sen, and S. Engin Kilic. Formation of dynamic virtual enterprises
and enterprise networks. The International Journal of Advanced Manufacturing Technology,
34:1246–1262, August 2006.

[95] Service Component Architecture Assembly Model Specification v1.00. http://

www.osoa.org/display/Main/Service+Component+Architecture+Specifications.
Open Service Oriented Architecture collaboration, March 2007.

[96] Ahmed Seffah, Mohammad Donyaee, Rex B. Kline, and Harkirat K. Padda. Usability
measurement and metrics: A consolidated model. Software Quality Journal, 14(2):159–178,
June 2006.

[97] Brian Shackel and Simon J. Richardson. Human factors for informatics usability, chapter
Usability — context, framework, definition, design and evaluation, pages 21–37. Cambridge
University Press, New York, NY, USA, 1991.

[98] Stabiplan B.V. http://www.stabiplan.nl.

[99] Fareena Sultan. Consumer response to the Internet: an exploratory tracking study of on-line
home users. Journal of Business Research, 55:655–663, August 2002.

[100] Clemens Szyperski. Component software: beyond object-oriented programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[101] CMMI Product Team. CMMI for Development, version 1.2. Software Engineering Institute,
August 2006. CMU/SEI-2006-TR-008.

[102] Shiu Lun Tsang, Siobhan Clarke, and Elisa Baniassad. An Evaluation of Aspect-Oriented
Programming for Java-Based Real-Time Systems Development. ISORC, 00:291–300, 2004.

80 Bibliography

http://www.hpl.hp.com/techreports/2001/HPL-2001-134.html
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.stabiplan.nl

[103] V. Vaishnavi and W. Kuechler. Design Research in Information Systems. http://
www.isworld.org/Researchdesign/drisISworld.htm. Association for Information Sys-
tems, January 2004, 2005.

[104] I. van de Weerd and S. Brinkkemper. Meta-modeling for situational analysis and design
methods. To appear in the Handbook of Research on Modern Systems Analysis and Design
Technologies and Applications, Idea Group Publishing, Hershey, PA, USA.

[105] Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske. Business Process
Management: A Survey. In Business Process Management, pages 1–12, 2003.

[106] Aad van Moorsel. Metrics for the Internet Age: Quality of Experience and Quality of
Business. Technical report, E-Services Software Research Department, Hewlett-Packard
Laboratories, Palo Alto, California, USA, 2001.

[107] Dinesh Verma. Supporting Service Level Agreements on IP Networks. Macmillan Technical
Publishing, 1999.

[108] Gregor von Bochmann, Brigitte Kerhervé, Hanan Lutfiyya, Mohamed-Vall M. Salem, and
Haiwei Ye. Introducing QoS to Electronic Commerce Applications. In ISEC ’01: Proceedings
of the Second International Symposium on Topics in Electronic Commerce, pages 138–147,
London, UK, 2001. Springer-Verlag.

[109] Guijun Wang, Alice Chen, Changzhou Wang, Casey Fung, and Stephen Uczekaj. Integrated
Quality of Service (QoS) Management in Service-Oriented Enterprise Architectures. In Pro-
ceedings of the 8th IEEE International Enterprise Distributed Object Computing Conference
(EDOC), pages 21–32, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[110] John Ward and Joe Peppard. Strategic Planning for Information Systems. John Wiley &
Sons, Inc., New York, NY, USA, 2002.

[111] What is Web services? - A Word Definition From the Webopedia Computer Dictionary.
http://www.webopedia.com/TERM/W/Web_services.html. Webopedia Computer Dictio-
nary.

[112] Christopher C. Whitehead. Evaluating web page and web site usability. In ACM-SE 44:
Proceedings of the 44th annual Southeast regional conference, pages 788–789, New York, NY,
USA, 2006. ACM.

[113] Thomas Woodley and Stephane Gagnon. BPM and SOA: Synergies and Challenges. In Web
Information Systems Engineering (WISE) 2005, pages 679–688, 2005.

[114] Naiqi Wu and Ping Su. Selection of partners in virtual enterprise paradigm. Robotics and
Computer-Integrated Manufacturing, 21:119–131, April 2005.

[115] Jian Yang and Mike P. Papazoglou. Service Components for Managing the Life-Cycle of
Service Compositions. Information Systems, 29(2):97–125, 2004.

[116] Robert K. Yin. Case Study Research: Design and Methods (Applied Social Research Meth-
ods). SAGE Publications, December 2002.

[117] Tao Yu and Kwei-Jay Lin. Service selection algorithms for Web services with end-to-end
QoS constraints. In Proceedings of the IEEE International Conference on e-Commerce Tech-
nology, 2004 (CEC ’04), pages 129–136, 2004.

[118] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for Web services selection with
end-to-end QoS constraints. ACM Transactions on the Web (TWEB), 1(1):6, 2007.

Bibliography 81

http://www.isworld.org/Researchdesign/drisISworld.htm
http://www.isworld.org/Researchdesign/drisISworld.htm
http://www.webopedia.com/TERM/W/Web_services.html

[119] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and Quan Z.
Sheng. Quality Driven Web Services Composition. In WWW ’03: Proceedings of the 12th
International Conference on World Wide Web, pages 411–421, New York, NY, USA, 2003.
ACM.

[120] Ronggang Zhou. How to Quantify User Experience: Fuzzy Comprehensive Evaluation Model
Based on Summative Usability Testing. pages 564–573, 2007.

82 Bibliography

Appendix A

Nuntia Database Diagram

Service

EventMethod

EventType

ServicesPerCustomer Customer

Country

FeedbackEvent

UIEvent ExceptionEvent

RequestEvent ResponseEvent

AvailabilityCheckEvent

1

0..*

1

0..*

1 1..* 1..* 1

1

0..*

0..*

1

1 1 11

1 1

0..1

0..1

0..1 0..1

0..1

0..1

Figure A.1: Database diagram of the Nuntia database, used to store logged usage and feedback data and
generate SKU reports

Nuntia Database Diagram 83

Appendix B

Environment Information Data
Structure

Environment Information Data Structure 85

<environmentinfo>

<browser>

<id><![CDATA[{0}]]></id>

<support>

<cookies>{1}</cookies>

<java>{2}</java>

<javascript>{3}</javascript>

<vbscript>{4}</vbscript>

<frames>{5}</frames>

<css>{6}</css>

<callbacks>{7}</callbacks>

</support>

<versions>

<browser>{8}</browser>

<javascript>{9}</javascript>

<msdom>{10}</msdom>

<w3cdom>{11}</w3cdom>

</versions>

<characteristics>

<ismobile>{12}</ismobile>

<platform>{13}</platform>

<screendimensions>{14},{15}</screendimensions>

<screenbitdepth>{16}</screenbitdepth>

</characteristics>

</browser>

<other>

<headers><![CDATA[{17}]]></headers>

<url>{18}</url>

<requesttype>{19}</requesttype>

<secureconnection>{20}</secureconnection>

<currentpage><![CDATA[{21}]]></currentpage>

<currentpagesize>{22}</currentpagesize>

<requesterip>{23}</requesterip>

</other>

</environmentinfo>

Figure B.1: Data structure of the environment information logged by Nuntia in case of an exception

86 Environment Information Data Structure

Appendix C

Nuntia Screenshots

Figure C.1: Screenshot of Nuntia’s management web interface

Nuntia Screenshots 87

Figure C.2: Screenshot of Nuntia’s Service Locator

88 Nuntia Screenshots

Figure C.3: Screenshot of Nuntia’s Report Generator

Nuntia Screenshots 89

Appendix D

Nuntia SKU Report

Figure D.1: Screenshot of a SKU report generated by Nuntia

Nuntia SKU Report 91

Appendix E

StabiBASE Web Integration

Figure E.1: Adjusted StabiBASE Web user interface, incorporating feedback submission functionality

StabiBASE Web Integration 93

Appendix F

Thesis Research Output
Publications

This chapter is considered confidential. Therefore, this chapter is not published. Please contact
Henk van der Schuur at hwschuur@cs.uu.nl for more information.

Thesis Research Output Publications 95

	List of Figures
	List of Tables
	1 Introduction
	1.1 Eras of Information Technology
	1.1.1 Data Processing Era
	1.1.2 Information Technology Era
	1.1.3 Network Era

	1.2 The Rise of Services
	1.2.1 The Service-Oriented Enterprise
	1.2.2 Service-Oriented Development

	1.3 The Desktop Online
	1.4 (Continuous) Customer Configuration Updating
	1.5 About Stabiplan B.V.
	1.5.1 Company Profile
	1.5.2 Software Products
	1.5.3 Software Services
	1.5.4 Customers
	1.5.5 Organization Structure
	1.5.6 Software Development

	1.6 Thesis Structure

	2 Research Approach
	2.1 Research Problem
	2.2 Introduction to Design Research
	2.3 Design Research in the Context of This Thesis
	2.3.1 Awareness of the Problem
	2.3.2 Suggestion
	2.3.3 Development
	2.3.4 Evaluation
	2.3.5 Conclusion

	2.4 Case Study
	2.4.1 Overview
	2.4.2 Research Methods
	2.4.3 Hypotheses

	2.5 Research Validation
	2.6 Summary

	3 SKU: Service Knowledge Utilization
	3.1 Services vs. Components
	3.1.1 What is a Component?
	3.1.2 What is a Service?
	3.1.3 Differences and Similarities

	3.2 Views on the Software Life Cycle
	3.2.1 Component-based Software Life Cycle
	3.2.2 Service-based Software Life Cycle
	3.2.3 Differences and Similarities

	3.3 Service Types
	3.4 C-CCU and Service-based Software
	3.4.1 Definition
	3.4.2 Software Vendor Responsiveness

	3.5 SKU Process Model
	3.5.1 Concepts
	3.5.2 Parties
	3.5.3 Activities
	3.5.4 Relations

	3.6 SKU in a Software Supply Network
	3.7 SKU Report
	3.7.1 Terms and Definitions
	3.7.2 Structure and Contents
	3.7.3 Metrics and Indices
	3.7.4 Report Applications

	3.8 SKU Characterization
	3.8.1 Introduction
	3.8.2 SKU Characterization Model
	3.8.3 Identifying the Vendor's SKU

	3.9 Summary

	4 Nuntia
	5 Results and Conclusions
	5.1 Validation Results
	5.1.1 SKU Characterization Model
	5.1.2 Software Prototype
	5.1.3 SKU Report
	5.1.4 Hypotheses

	5.2 Conclusions
	5.3 Answers to Research Questions
	5.4 Discussion
	5.5 Positioning of Research Contribution
	5.5.1 Quality of Service Metrics
	5.5.2 Service Management and Usage Monitoring
	5.5.3 Aspect-Oriented Programming

	6 Future Research
	6.1 Integration
	6.2 Scalability
	6.3 Reporting
	6.4 Development Assistance
	6.5 Characterization

	Bibliography
	A Nuntia Database Diagram
	B Environment Information Data Structure
	C Nuntia Screenshots
	D Nuntia SKU Report
	E StabiBASE Web Integration
	F Thesis Research Output Publications

